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Abstract 
The purpose of this paper is to encourage mathematics educators to refine their notions of 

generalizing and generalization. The paper describes generalization and how definitions of generalization 

have evolved from conceptions of transfer. In particular, the paper demonstrates how definitions of 

transfer have shaped definitions of generalizing, and specifically how constructivist learning perspectives 

have influenced definitions of mathematical generalization. Furthermore, the activity of generalizing is 

explained in the context of algebra as a way to support early algebra learning. Lastly, the final section 

offers tasks as a resource for mathematics educators who aim to promote generalizing in their 

classrooms. 
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1. Introduction 

 

Generalization is the activity of lifting and communicating reasoning to a level where the focus is no 

longer on a particular instance, but rather on patterns and relationships of those particular instances [41]. 

Generalizing is the most authentic practice of the mathematics classroom. The process of generalizing a 

set of particular instances, and justifying and formalizing the generalization is fundamental to 

mathematics. Yet, as a review of the literature will reveal, conceptions of generalization vary.   

Generalizing is often described as the core of algebra [18, 43, 54]. To this end, generalization has 

garnered increased attention; particularly as standards and initiatives suggest that generalizing have a 

stronger role in elementary grade mathematics (e.g., [57, 58, 59, 60]). As the field moves forward in 

striving to maximize students’ engagement with generalizing, mathematics educators need to refine their 

notions of generalizing and generalization. 

Furthermore, some researchers argue that generalizing is natural and occurs without an instructor or 

curriculum promoting it. Children have a natural inclination to notice and discuss regularities and 

patterns in the number system, and that is the foundation for constructing, testing, and justifying 

generalizations [69]. Many traditional elementary mathematics concepts are platforms for generalizing, 

such as the Commutative Property of Addition—the order in which two terms are added does not affect 

the sum. When learning these concepts, students begin to explore generality [69]. Educators must be able 

to identify these opportunities and be aware of ways they can make use of students’ “natural powers” to 

generalize [55]. Thus, mathematics educators need to familiarize themselves with the various ways 

generalization is defined, so that they can identify the phenomena of generalizing and support students’ 

as they engage in generalizing activity.  

http://www.imvibl.org/
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Over the last twenty years definitions of generalization have broadened. In particular, researchers 

have shifted their conceptions of generalization from an individual cognitive action (e.g., [13, 21, 24, 31, 

56]) to a situated activity, distributed across multiple tools, resources, and people [15, 16, 23, 25, 26, 27, 

30, 40, 52, 70]. This paper describes generalization and how definitions of generalization have evolved 

from conceptions of transfer. In particular, the next section of this paper demonstrates how definitions of 

the act of transfer have shaped definitions of the activity of generalizing. The following two sections 

describe specifically how constructivist learning perspectives have influenced definitions of 

mathematical generalization. Furthermore, in the fourth section, the activity of generalizing is explained 

in the context of algebra as a way to support early algebra learning. Lastly, the fifth section offers 

example tasks as one practical way for mathematics educators to promote generalizing in their 

classrooms. 

 

2. The Act of Transfer Versus the Activity of Generalizing 

 

The activity of generalizing is critical to learning beyond and outside of mathematics as well as 

within mathematics. In fact, education is “aimed at helping students develop robust understandings that 

will generalize to decision making and problem solving in other situations, both inside and outside the 

classroom” [51, p. 431]. Likewise, transfer is a topic that often sits at the core of debates on learning; 

therefore, similar arguments have been made regarding transfer [16]. Hence, the ways in which 

mathematics education researchers conceptualize generalization stems from the ways in which 

researchers conceptualize transfer, and transfer and generalization are closely related.  

Transfer refers to the act of applying knowledge that was learned in one situation to a different 

situation [50]. Although transfer is often viewed as central to learning, the term transfer has garnered 

negative attention in some research communities, particularly in mathematics education research. The 

negative connotation may stem from an extensive body of research that conceptualizes transfer as an 

isolated, individual cognitive action. 

Furthermore, research on transfer in mathematics education has found that transferring knowledge 

can be counterproductive when learning mathematics. In some cases, transferring knowledge leads to 

automatic behavior, which lacks mathematical insight and often results in incorrect problem solving. 

Abramovich [1] discusses this phenomenon in a chapter on the Einstellung effect, which occurs when 

problem solvers demonstrate a tendency to apply previously acquired strategies, regardless of the 

appropriateness of the strategy, over mathematical insight. In his chapter, Abramovich compares 

productive and reproductive thinking, equating reproductive thinking to transfer. Using a task similar to 

those in section 5 of this paper, Abramovich reflects on a prior study (viz., [4]) in which the researchers 

observed a pre-service teacher engage in reproductive thinking by reasoning proportionally about a 

relationship that was not directly proportional. 

In the late 1990s, various reviews and rejoinders between research communities regarding transfer 

from traditional cognitive learning theories and situated, sociocultural learning theories took place. 

Anderson, Reder, and Simon [5, 6] and Greeno [33] are two of the well-known exchanges in which 

authors discussed their stance on transfer. Responses regarding this particular exchange (e.g., [17]) refer 

to Anderson et al. [5, 6] as the first wave of cognitive learning theories and Greeno [33] as the second 

wave of cognitive learning theories. 

From the first wave perspective, transfer is demonstrating the acquisition of decontextualized 

knowledge by applying knowledge in a situation other than the situation in which it was acquired [50, 

51]. Thus, learning is not context-specific; rather learning depends on acquiring knowledge that 

corresponds to an external reality. At a theoretical level, this perspective presumes knowledge is 

ontologically independent of perception. 

In traditional transfer studies, research on lateral transfer is prevalent. Lateral transfer studies have 

investigated isomorphic transfer by assessing if students apply knowledge to the same problem at 

different points in time (e.g., [36]), homomorphic transfer by assessing if students apply knowledge to 

similar problems, which are problems with the same structure and underlying question (e.g., [65]), and 

general lateral transfer between similar but slightly modified problems (e.g., [7, 64]). Furthermore, some 

researchers distinguish between near and far transfer. Near transfer occurs when knowledge is transferred 

between similar situations, whereas far transfer occurs when knowledge is transferred between different 

contexts (e.g., [7]). 
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Traditional transfer research has yielded a few major findings. The most prevalent finding of these 

studies is that practicing certain problems results in little or no transfer to similar or related problems 

(e.g., [37, 38, 64]). Namely, these studies show that students rarely, if ever, transfer prior knowledge. 

Yet, nearly all theories of learning suppose that learning involves prior knowledge. Furthermore, 

everyone can remember a time in which they generalized knowledge or witnessed someone else 

generalize knowledge. Hence, researchers have coined this finding the paradox of traditional transfer 

research [51]. This paradox may have contributed to the field moving away from studying transfer in the 

traditional sense, which had developed a negative connotation, and towards a reconceived view of 

transfer. 

First wave transfer research was part of a stagnant period, which ended in the mid-1980s when 

theorists expressed dissatisfaction with traditional perspectives and the limited definition of transfer. As 

Lobato [51] said, researchers began questioning “the assumptions about knowing, knowers, learning, and 

context” undermining the traditional conceptions of transfer. This shift began an era of constructivist 

research along with the second wave of cognitive research (e.g., [33]), which both contributed to a 

reconceived understanding of transfer, more appropriately referred to as generalization in mathematics 

education. 

 

3. Constructivist Conceptualizations of Generalization  

 

Constructivist perspectives have shaped definitions of transfer, and thus have contributed to 

researchers’ conceptualizations of generalization. As previously stated, at a theoretical level, the 

traditional definitions of transfer presume knowledge is ontologically independent of perception. 

Conversely, constructivist learning theorists account for individuals’ perceptions and view individuals’ 

cognitive processes as intentional and generative [40]. Thus, constructivists reject the traditional 

definition of transfer because it disregards perception. Embedded in a constructivist definition of 

generalization is the assumption that mathematical understanding is dependent on an individuals’ 

perception (cf. [6]). 

Building on Piaget's theory of learning, constructivist research on generalization (e.g., [21, 31, 56] 

defines the construct in terms of abstraction. By doing so, this perspective conceptualizes generalization 

as a process of ideas becoming more abstract. That is, generalization is the process of moving away from 

the concrete situation, or the process of abstracting what is similar and salient in the structure of objects, 

relationships, or operations [45]. The relationship between generalization and transfer is evident because, 

at a surface level, this definition aligns with a traditional definition of transfer. Bassok and Holyoak’s [7] 

three-part study demonstrates this point. 

Bassok and Holyoak [7] is representative of research conducted from the traditional perspective. In 

this study, the authors conducted three experiments to examine students' abilities to generalize skills 

obtained in practicing arithmetic-progression problems in algebra to constant-acceleration problems in 

physics. The researchers evaluate students’ lateral transfer by measuring if knowledge can be accessed in 

a situation other than the one in which it was directly taught. In other words, the researchers evaluate 

students’ ability to generalize knowledge from algebra to physics. While this example shows the 

relationship between transfer and generalization, a deeper understanding of generalization from the 

constructivist perspective will further reveal the differences between traditional transfer and 

generalization. 

Mitchelmore and White [56] believe generalization is the process in which one identifies the essence 

of an idea through an interconnected web of knowledge about that idea and then creates a model that 

serves as the basis for the idea and related ideas. Whereas, Font and Contreras [31] explain that the 

product of the process of generalizing is generalization, which is no different from an individual’s 

objectification, idealization, or abstraction. On the other hand, also from the constructivist perspective, 

Harel and Tall [35] define generalization with a hint of a social context, as “the process of applying a 

given argument to a broader context,” (p. 38) while emphasizing that the process depends on the 

individual’s current knowledge. In general, researchers from the constructivist perspective describe 

generalization as a process by which an individual constructs and applies a general idea. At a theoretical 

level, this perspective assumes knowledge is individual and cognitive. 

While the traditional perspective might also describe transfer as "individual and cognitive," 

compared to a constructivist definition of generalization, the traditional perspective puts less emphasis on 
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the individual. Unlike Bassok and Holyoak [7] and other traditional research, constructivist research 

accounts for the categories and representations of individuals’ perceptions that they construct to make 

sense of the world. A case in point is Dubinsky’s [24] description of generalization in terms of his 

Action-Process-Object-Schema (APOS) cycle. Based on Piaget’s cognitive theory, the final stage of 

APOS is reflective abstraction. In this stage, the objects constructed by the learner exist only in the 

learner’s mind. Hence, according to Dubinsky generalization is the application of an individual’s schema 

to a broader context.  

Both the traditional and constructivist definitions may use “individual” to exclude the social aspect of 

transfer. However, the constructivist perspective uses “individual” as a way to emphasize individual 

intention and perception, whereas the traditional approach uses "individual" to avoid the social. 

Constructivist definitions of generalization are compatible with situated and sociocultural theories. 

Although examples of theoretically dichotomous research in generalization exist (see [24] vs. [30]) most 

researchers do not view the constructivist and situated/sociocultural perspectives, or second wave 

perspectives, as mutually exclusive, and hence locate themselves somewhere on a continuum (e.g., [22, 

35]). 

 

4. Generalizing as a Situated Activity 

 

Situated and socially oriented definitions of transfer emerged in concert with the second wave of 

cognitive research. By studying learning in non-traditional settings, researchers addressed assumptions 

about learning as an individual and cognitive act, by developing broad theories, such as sociocultural 

theory [71, 72], distributed cognition [39, 61], situated cognition [34, 49], and embodied cognition [32]. 

Since transfer is critical to learning, as researchers began broadening their perspectives, they 

simultaneously redefined transfer as a dynamic, situated construct, more appropriately referred to as 

generalization. That is, one reason for broadened definitions of generalization is that definitions of 

generalization are shaped by theories of learning. Generalization is fundamental to learning [16], so a 

reconceptualization of learning necessitates a reconceptualization of generalization. 

According to Carraher and Schliemann [16], generalization is the mental construct that results from 

adapting, adjusting, and reorganizing a wealth of previous learning experiences. Whereas Ellis [29] 

defines generalization as the product or outcome of generalizing, demonstrated through activity and talk, 

and generalizing as the activity, tied to a specific socio-mathematical context, through which people 

construct generalizations. On the other hand, Jurow [40] defines generalization as the social process of 

identifying and claiming that some rule can be applied to multiple situations or objects, shaped by the 

people and the representations or tools involved.  

Despite various nuances in the way that researchers define generalization and use theory, a salient 

point of agreement among these examples is that generalization is dynamic and shaped by social and 

contextual factors. Since second wave perspectives are flexible perspectives, some authors even develop 

their own “brands” of a theory by specifying how their definition may differ from others. For instance, 

Dörfler [22] describes his “brand” as a semiotic constructivist understanding of generalization because he 

bases his definition on the assumption that meaning is constructed from social sign systems. However, 

the fundamental idea that generalization is shaped by contextual factors remains.  

 

5. The Activity of Generalizing in Practice 

 

      Contributions 

 

Studies on generalization as a social and situated activity produce findings that are practical and 

applicable to the classroom context. In a rejoinder comparing the situated and traditional cognitive 

perspectives, Anderson et al. [6], who advocate for the traditional perspective, argue that the prevailing 

theory of learning will be the theory that improves education. Although the authors were implying that 

the traditional approach would prevail, their statement holds true. In current generalization research, the 

situated and sociocultural perspectives dominate because they produce practical results by documenting 

the ways that context (e.g., instruction, activities, curricula, discourse, etc.) influences learning. 

Research on generalization has three main contributions. First, findings have informed instruction [9, 

27, 28, 30, 40, 52, 53, 73]. For instance, research has identified focusing phenomena in an instructional 
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or problem solving environment that foster generalization (e.g., [52]); instructional mechanisms that 

support students’ engagement with generalizing and justifying as interrelated practices [27, 53]; and 

contextual framing [30] and linking and conjecturing as ways to support generalizing [40].  

Second, findings have impacted the ways in which the field characterizes generalization (e.g., [25, 

26, 29, 68]. For instance, research has categorized and described the actions that foster developing or 

refining generalizing actions and generalizations [25, 26, 29] and identified forms of generalization [68].  

Third, findings have contributed to the field’s understanding of factors shaping generalizing [16, 62, 

66, 68]. For instance, research has explained the role of iconicity and contraction processes in the 

mathematical experience of generalizing [63], the role of gestures, speech, semiotic signs [62], and 

concrete instruments or environments in generalizing [16]. Additionally, several studies have 

investigated the relationship between generalizing and justifying (e.g., [8, 25, 26, 27, 29, 47, 48]. 

Most notable are the practical findings, that suggest how to or what may foster generalization in the 

classroom. The research listed above defines generalization in a variety of ways. However, one similarity 

among these studies is that generalization is conceptualized as a situated activity, distributed across 

multiple tools, resources, and people. Research that defines generalization in this way employs a situated 

perspective. As a result, this research is conducted in the context of an authentic classroom; in turn, the 

research findings can be applied in the context of a classroom.  

Studies from the situated perspective that focus on generalization inform mathematics learning in 

general because understanding the context of generalizing helps researchers make sense of how students 

learn mathematics. Jurow’s [40] analysis of students’ studying guppy population growth focuses on the 

communication and shared understandings of students’ generalizations. By examining learning as 

participation in a community of practice, Jurow focuses on the context of generalizing. Jurow’s emphasis 

on context results in an interesting and unique contribution to the field. Since generalizing is a 

fundamental practice in mathematics, understanding how students generalize “help(s) us understand how 

students enter into the specialized disciplinary discourse of mathematics” [40, p. 280]. That is, 

understanding the context of generalizing informs researchers about how students learn mathematics in 

general.  

Another example of a study from the situated perspective on generalization that informs mathematics 

learning in general is Ellis [26].  Contrasted with Jurow [40], this study focuses more on the process of 

generalization than the context of generalization. Specifically, Ellis [26] aims to understand how students 

develop increasingly sophisticated generalizations, and by doing so, she gains insight in how students 

develop this kind of mathematical expertise. Moreover, Ellis argues that by understanding what students 

generalize about, researchers will gain understanding about the aspects of the phenomena that were most 

important to the student, further contributing to understanding mathematics learning in general. 

As researchers continue to conceptualize and explore generalization as a social and situated activity, 

research will become generatively practical by contributing to the growing understanding of students’ 

generalizing in situ and how to study students’ generalizing in situ. Finally, research on generalization is 

especially productive because it contributes to knowing how students learn the authentic thinking 

practices of mathematics by moving “away from the predominant preoccupation with numerical 

calculations”, and placing the “focal emphasis on typical and important ways of mathematical thinking” 

[22, p. 159]. 

 

      Generalizing and Algebraic Thinking 

 

At this point, the paper has defined generalization in the context of research. The relationship between 

transfer research, and constructivist, situated learning theories, and generalization has been explained, 

and generalization and the importance of generalization have been described. What is generalizing in the 

context of a classroom? The remainder of this paper addresses this question. In the following section, 

generalization is presented as a way to engage students in algebraic reasoning. 

Recently, early algebra has emerged as a developing subfield in mathematics education research. In 

response to high failure rates in algebra, initiatives (e.g., [57, 58, 59, 60]) and conferences (e.g., the US 

Department of Education Algebra Initiative Colloquium, 1993; the Nature and Role of Algebra in the K-

14 Curriculum Conference, 1998; and the Mathematics Learning Committee of the National Research 

Council, 2001) have re-conceptualized algebra, suggesting that algebraic thinking have a stronger role in 
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elementary grade mathematics, specifically, that algebra should be treated as a longitudinal K–12 strand 

of thinking. This curricular shift in elementary mathematics is referred to as early algebra. 

Early algebra conceptualizes algebra as a mental activity. More commonly, algebra is condensed to 

one or two classes; it exists as its own entity, with no explicit interweaving with other mathematics 

topics. This curricular structure implies that, upon completion of the class, algebra is complete. In 

contrast, early algebra initiatives reframe algebra as a longitudinal strand of thinking that extends 

throughout grade levels and topics, and generalizing is a fundamental aspect of this longitudinal strand of 

thinking. 

According to Kaput [41], algebraic thinking is the process of generalizing mathematical ideas from a 

set of particular instances, justifying those generalizations through discourse, and then expressing them in 

age-appropriate formal ways. Essentially, generalizing is the core of algebra [18, 43, 54]. 

Generalized arithmetic is building on arithmetic by recognizing and articulating mathematical 

structure and relationships and using insights to generalize [11, 14, 20, 42]. Historically, elementary 

mathematics focuses mainly on arithmetic and computational fluency. Therefore, generalized arithmetic 

is often outlined as one pathway into early algebra [42]. 

As previously noted, some researchers even argue that generalizing is a natural way of thinking for 

students, and suggest that the inclination to notice and discuss regularities and patterns in the number 

system is the foundation for constructing, testing, and justifying generalizations [69]. The field offers 

substantial research that describes the algebraic way of thinking in elementary grades. Research verifies 

the feasibility of early algebra by demonstrating students’ capabilities (e.g., [55]) and by showing how 

proper tool use and instruction can promote young children to reason algebraically. For example, 

Abramovich [3] demonstrated how a graphics software enabled second-grade students to engage in 

informal algebraic reasoning, which not only raised the cognitive demand of the mathematics curricula, 

but also supported students in naturally developing informal problem-solving skills. 

Students naturally engage in the activity of generalizing. Moreover, algebra is a significant portion of 

the K-12 mathematics curriculum in most countries. Therefore, generalizing is likely occurring in 

mathematics classrooms, ranging from elementary to secondary grades. It is critical for educators to be 

aware of students’ natural abilities to generalize and the opportunities to encourage generalization. In 

order to do this, educators must have a clear definition of generalization and be able to identify the 

activities of and opportunities for generalizing. 

Generalizing is a practical way to support algebraic thinking at any grade level. By understanding 

definitions of generalization, educators may be able to identify and encourage it in their classroom. 

Although “algebrafied” instructional materials are uncommon [10, 11], mathematics educators can 

incorporate opportunities to generalize and promote generalization in their classroom using any 

mathematics curriculum by modifying existing tasks or supplementing their curriculum with tasks that 

promote generalizing. 

As indicated in a review of literature on generalization, the area of research is extensive. Moreover, 

studies often publish the mathematical tasks, which were successful in promoting generalization in their 

research experience. The final section is a review of mathematical tasks, developed and refined in 

research that may promote generalization in the context of a mathematics classroom. The purpose of this 

review is to provide mathematics educators with tasks that they could implement and examples to 

communicate some of the characteristics and aspects of tasks that have proven successful in promoting 

students’ generalizing elsewhere. 

 

       Generalization Activities/Tasks 

 

The Stacking Cubes task (see Fig. 1) was adapted from a study that examined the ways in which 

instructional materials can support students’ engagement in functional thinking [11].  The task was used 

with elementary students. The researchers found that one way to introduce generalization into curriculum 

is to vary task parameters. For instance, if a functional thinking task, similar to the Stacking Cubes task 

(see Fig. 1), did not ask students to describe the surface area for fifty cubes, students may not think 

beyond the scope of the present number of cubes. Similarly Lannin et al. [48] found that by asking 

students to solve for a value that is large enough that they are unable to model the problem using that 

value encourages them to go beyond arithmetic reasoning by identifying and generalizing a pattern or 

relationship. 
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Fig. 1. Stacking Cubes (adapted from [57, p. 160]). 

 
The Straw Task (see fig. 2) is well known; the task or variations of the task can be found in many 

places. One variation of the task appears in Abramovich and Brouwer [4], a previously mentioned study 

in which the researchers observed the Einstellung effect (see [1] for further elaboration of the Einstellung 

effect).  

The Straw Task was also used to examine the sophistication of students’ justification in grade six 

[47]. All of the tasks used in the study involved iconic representations, so that students were encouraged 

to find connections between their calculations and the representation. Then, the researchers could make 

inferences about students’ justification strategies by examining how they related their calculations to the 

representation. Furthermore, the tasks involved geometric relationships, so that students could easily 

draw connections between their calculations and the problem context. This strategy was again employed 

and successful in a later study (viz., [48]). 

 

 
Fig. 2. The Straw Task (adapted from [47]). 

 
Blanton et al. [12] study the development and sophistication of students’ thinking about generalized 

functional relationships. The study employed a teaching experiment conducted with 6-year old children. 

Interestingly, the study finds that students, as early as 6
 
years old, engage in sophisticated thinking about 

functional relationships. Dogs and Dog’s Noses (see Fig. 3) is a modified version of a task used in this 

study. The task was given prior to the teaching experiment. That is, students had no experience with 

functional reasoning when they engaged with this task. 

In the article, the researchers list many tasks used throughout the teaching experiment, all intended to 

foster generalizing about functional relationships. One slightly more advanced task, that appears later in 
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the teaching experiment, is a simple modification of Dogs and Dog’s Noses (see Fig. 3). The modified 

task asks students to consider the relationship between the number of dogs and the total number of legs 

on the dogs. In other words, the task involves counting dogs and their legs, instead of their noses. Despite 

the variety of tasks shared by Blanton et al. [12], the tasks were designed for young children, and thus 

would not be intellectually stimulating for a more mathematically advanced audience.  

 

 

Fig. 3. Dogs and Dog’s Noses (adapted from [12]). 

 

Examples of tasks that are appropriate for mathematically advanced students can be found in recent 

issues of this journal. Abramovich [2] discusses how technology can shape the way pre-service teachers 

learn to develop problem-posing skills and construct and refine tasks. This author discusses a framework 

for characterizing tasks that has supported pre-service teachers in learning the “craft of task design” (as 

cited in [2]). One rich example that illustrates his argument and could be implemented elsewhere to 

support generalization was a task given in a teacher education course called “Creative problem solving.” 

Initially, he shared the task in Fig. 4 with the students – pre-service teachers. After analyzing the task 

according to the previously mentioned framework, the pre-service teachers revised the task so that the 

context was more interesting and exoteric, meaning it was likely to be accessible to students (see Fig. 5). 

 

Natural numbers are put in groups as follows:  
(1), (2, 3), (4, 5, 6), (7, 8, 9, 10), (11, 12, 13, 14, 15), 
... .    
Find the sum of numbers in the 10th group.  
Find the sum of numbers in the nth group.  

 

Fig. 4. Grouping number groups [2, p. 125]. 
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A group of people is in a room together for some kind of meeting. 
Each person is expected to become part of a group. The first group 
will have one person, the second group will have two people, the 
third group will have three people, and so on. The person in the 
group one is assigned the number one. The persons in the group 
two are assigned the numbers two and three. The persons in the 
group three are assigned the numbers four, five, six, and so on with 
the remaining groups. Each person in each group is given a piece 
of candy according to their number. For example, person one gets 
one piece of candy, person two gets two pieces of candy, person 
three gets three pieces of candy, and so on. The person handing 
out the candy wants to put each group’s candy in a zip lock bag 
prior to handing it out and needs to know the total pieces of candy 
each group will get. Help this person to solve the problem.  

 

Fig. 5. Bags of candy [2, pp. 125-126]. 

 

However, after revising the task, the pre-service teachers decided that the task would benefit from 

further modification. They explained that the task required students to find the sum of consecutive natural 

numbers from a generalized number without providing any scaffolds to help them do this. In response, 

the class explored how using a spreadsheet might initially support students in the problem-solving 

process. 

Thus far, all the tasks in this paper have encouraged students to test particular instances, compare and 

relate those instances, and then search for a pattern or relationship among the particular instances. The 

remaining tasks vary slightly in that they promote justification by inviting students to agree or disagree 

with a conjecture. This scenario initiates a dialogue about the validity of the conjecture, thereby 

promoting students to justify—to provide evidence or backing for their argument.  

Researchers have found that justification is critical to generalization (e.g., [26, 29, 47]. Thus, asking 

students “why or why not?” to promote justification, in turn supports generalizing. Moreover, 

constructing a scenario, such as the scenarios used in Figs. 6 through 9, initiates argumentation and 

justification because it creates a situation in which the student can agree or disagree. Conversely, if a 

textbook states a conjecture directly students are unlikely to interpret the conjecture as negotiable.  

Cooper et al. [19] used two of these tasks (see figs. 6 and 7) in semi-structured interviews with 

middle school students. The goal of the research was to identify the strategies that students used to 

evaluate and justify their conjectures. The last two tasks were used in a study with students in grades 6-8. 

The study aimed to understand students’ ability to justify and prove [44]. Although these tasks were used 

to promote proof, they are valuable in encouraging students to generalize as well. As previously noted, 

students are naturally capable of noticing, expressing, and representing characteristics and properties of 

numbers, which these tasks support [55]. Additionally, these tasks foster generalized arithmetic because 

they prompt students to notice and discuss mathematical relationships, and then generalize about those 

ideas. 

 

 
Fig. 6. Tellie’s “Times Three” Conjecture (adapted from [19]) 
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Fig. 7. Tellie’s “Divisible by Three” Conjecture (adapted from [19]) 

 

 

 
Fig. 8. Una’s “Sum of Neighboring Numbers” Conjecture (adapted from [44]) 

 

 
Fig. 9. Una’s “Adding Evens” Conjecture (adapted from [44]) 

 

 
6. Conclusion  

 

The ways in which mathematics educators understand and define generalization continues to evolve. 

In many ways, “generalization” resembles what Lacan [46] calls a sliding signifier. Depending on one’s 

epistemology and beliefs about learning, generalization is conceptualized differently. Furthermore, 

generalizing appears in countless forms, at various levels of sophistication, and in relation to many 

different concepts. The aim of this paper is to provide an overview of those definitions, and offer some 

historical context in hope to explain major shifts in definitions of generalization. With this information, 

readers can glean their own understanding of the concept, and relate it to their classroom experience.  

Since this paper is not an empirical study, the author’s contribution is limited in that the ideas 

presented here are a synthesis of previously shared and published ideas. The goal of this synthesis is to 

provide examples that will help refine readers’ definitions of generalization, and offer teachers and 

researchers resources for encouraging generalization in the classroom. Moving forward, I hope teachers 

and researchers will build on these ideas with an aim to contribute to the growing understanding of 

generalizing in the classroom. 
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