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Abstract
The purpose of this article is to present a connection between school and university
mathematics. We examine infinite periodic (non-pre-periodic) decimal expansions of
rational numbers with mathematical rigor by using the university-level Number Theory
and Group Theory. We will find there connections to various concepts and results con-
cerning the multiplicative group modulo m. We illustrate and concretize our consider-
ations, and propose some preliminary task ideas for all school levels. We also describe
how the didactic mathematics programs are organized at the University of Tampere,
Finland. We present the mathematical background needed in this subject in Appendix
section at the end of the paper.
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1. Introduction

Transforming a rational number a=b into an integer, decimal fraction or infinite periodic
decimal expansion is a very common activity at school. For example

(i)
10

5
D 2

(ii)
3

5
D 0:6,

3

40
D 0:075

(iii)
4

9
D 0:444 : : : D 0:4,

1

7
D 0:142857142857 : : : D 0:142857

(iv)
1

6
D 0:1666 : : : D 0:16;

7

30
D 0:2333 : : : D 0:23

(pre-periodic, i.e., the period does not begin immediately).

Transforming a fraction of type (iii) into an infinite periodic expansion seems to be quite a
negligible, mechanical, boring, and insignificant event in school mathematics. However, it
includes an almost endless number of quite captivating features. At all school levels teach-
ers would do well to maintain some researcher’s mind and inquisitiveness. This, if anything,
could have an important transfer effect on the pupils. Our approach is just one of numerous
�Corresponding author.
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possibilities where the teacher together with the pupils can take an in-depth look at phenom-
ena. Today the teacher must also have a general view of what is studied and how students
carry out studies at the different school levels, no matter what his or her own teaching po-
sition in the school system is. With the help of our approach he or she can do at least a
little wandering along the timeline of the curricula from the primary school to the upper
secondary school—or even further.

We will examine (iii) with mathematical rigor by using the university-level Number
Theory and Group Theory. We will find there connections to the Euler totient function,
congruence, reduced residue system modulom, subgroups of groups, cosets, cyclic groups,
order of an element in a group, and Lagrange’s theorem. First, however, we illustrate and
concretize our considerations, and propose some preliminary task ideas for different school
levels. But, first of all, we would also like to describe the didactic mathematics programs at
the University of Tampere, Finland, which has provided the inspiration for our approach.

Since we completed our research we found that Brenton [4] has also written on decimal
expansions and group theory. Our approach is, however, different from that of [4].

2. Didactic mathematics at the University of Tampere

At our University of Tampere some particular student groups are allowed to carry out their
60 credits studies in mathematics as so-called didactic mathematics, i.e.,

� TheMaster’s degree students in the School of Education whosemajor subject is education
and obligatory minor subject mathematics.

� Students in the primary school teacher program.

� Since the autumn of 2010 also the students majoring inmathematics who are going to take
the teacher’s pedagogical studies. This possibility is restricted to the course of geometry.

Our Secondary Teacher Education Unit in the School of Education has been mainly respon-
sible for the implementation of the basic studies (25 credits) included in the 60 credits. The
basic studies have been made up of Analysis for Teachers 8 credits, Geometry 6 credits,
Number Theory and Algebra for Teachers 7 credits, and Learning Mathematics 4 credits.
These courses have been arranged in cycles of two years, one course per each term. Curric-
ula for the courses can be found in [2]; unfortunately only in Finnish. The remaining part
(35 credits) of the studies has been arranged in the ordinary teaching program in the subject
of mathematics and statistics in the School of Information Sciences which bears the final
responsibility for the entirety of didactic mathematics, too.

The Secondary Teacher Education Unit has interpreted the didactical emphasis in the
university mathematics course as covering the following three points: accommodating the
course contents to school mathematics as well as possible; using such teaching methods
and ways of approaching which coach the students to use similar ones in their teaching
profession—remembering, of course, the different stages of the pupils’ lives; and, thirdly,
aiming at a rich and many-sided view of mathematics in school and university mathematics
alike (cf. [8]). In this article our focus is mainly on the third point, and our approach comes
from the course “Number Theory and Algebra for Teachers”.

Through the group concept the school teacher is able to attain a concise picture of many
counting structures, take for example the integers or vectors with addition. It has an analo-
gous meaning as a part of the ring and field structures which appear in many places at school
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as well. On the other hand, the existence of these “too familiar” models may not motivate
the teacher student enough into the studying of even elementary university algebra. How-
ever, we have now developed and attached to the group concept a school significance which
is not immediately perceptible but which, in fact, is present in the early stages of school
mathematics. This is an example of hidden mathematics curriculum, an important notion
originally introduced in [1].

3. Concretizing of our approach

In type (iii) the decimal expansion does not terminate, it repeats over and over its period—
a string of digits; the period also begins immediately after the decimal point (in Finland,
however, we use a comma, not a point, for this purpose; we have also used a bar to indicate
the pattern of repeating digits). Generally, we now first make the natural assumptions that
1 � a < b, and that we have a canceled form, i.e., gcd.a; b/ D 1, where gcd stands for
the greatest common divisor; in addition we assume that gcd.b; 10/ D 1. In what follows,
these assumptions will always be valid.

Example 1. By the long division we attain 1=7 D 0:142857142 : : : D 0:142857. Behind
this method there is the division algorithm, one of the basic tools in number theory. Let us
first write 1 D 7 � 0 C 1; hence we have the first term 0 of the quotient (the whole part
of the quotient). The first remainder 1 is equal to 10 tenths; so by writing 10 D 7 � 1C 3,
we get the next term 1, one tenth, of the quotient. The second remainder 3 (tenths) is 30
hundredths, so we have to write 30 D 7 � 4C 2 to get the 4 hundredths in the quotient, etc.
The remainders are 1, 3, 2, 6, 4, 5 (in this order)—and then again there is the remainder 1,
etc. By the division algorithm, the only possible remainders are 1, 2, 3, 4, 5, or 6 (if 0 were
there, the division would terminate). So there must be some recurrence or periodicity. In
this example we get the “theoretical maximum length” 7 � 1, and the period is made up of
the digits 1, 4, 2, 8, 5, 7, in this order. The division 1=7 can be illustrated—at least to some
extent—by imagining the apportioning of one-meter-long pizza to seven sisters. Each sister
gets one tenth, four hundredths, two thousandths, etc., of the pizza. In fact, the apportioning
never ends in the “mathematical world”. If the sisters eat their portions as they get them they
can eat endlessly, only the portions become smaller and smaller; if they wait for the end of
the apportioning they can starve to death.

It follows easily from the division algorithm that generally the length of the (shortest)
period of a=b in the long division is at most b � 1, because the possible remainders by
dividing with b are 1, 2, : : : , b � 1. So in the case of 1=7 we have the maximal length of
period, but in the case of 4=9 D 0:444 : : : we stay far away from it. Some outer features of
the long division have changed many times during the lives of the writers but the division
algorithm has not changed and never will.

Studying the lengths of the periods opens up quite interesting views. For example in
the case of a D 1 and b D 21, we have 1=21 D 0:047619 047619 : : : D 0:047619, so
the “theoretical maximum” 21 � 1 is not achieved. The length � of the periodicity is 6.
The divisor 21 is not a prime number whereas 7 is. Does this explain the difference? Not
exactly, for example, 1=11 D 0:0909 : : : , so, � D 2 (only), despite the fact that 11 is a prime
number. We will later demonstrate conclusively that the length � of the period in the case
of (iii) is always a factor of the Euler totient function’s value �.b/ at b.
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The Euler totient function �.b/ counts the number of the integers 1 � k � b for which
gcd.k; b/ D 1. So, for example, �.7/ D 6, and �.21/ D 12. If b is small enough we
just have to write down the integers 1, 2, : : : , b, and then delete those integers k for which
gcd.k; b/ > 1. After that, we simply have to count the number of the integers which are left
over. We will later also give a formula by which the value of �.b/ can be calculated. Most
symbolic calculation software have a command for �.b/. For example, Wolfram Alpha is
an excellent free on-line tool.

The number �.21/ D 12 gives the order (cardinality) of the multiplicative group mod-
ulo 21, too. In fact, the set Z�21 D f1; 2; 4; 5; 8; 10; 11; 13; 16; 17; 19; 20g constitutes the
multiplicative group modulo 21. The set Z�21 is the same as the set of all possible divi-
dends in the case of a=21. Similarly, �.7/ D 6 gives the order of the multiplicative group
modulo 7.

Let us now again take a look at the long division of 1=21. The first remainder is the
dividend 1, the second remainder is 10, then come the remainders 16, 13, 4, and 19, until
the repetition begins. We observe that these remainders also belong to the set Z�21. Our final
decimal expansion is 1=21 D 0:047619, so � D 6, and the period is made up of the digits 0,
4, 7, 6, 1, and 9. The set of the remaindersH D f1; 10; 16; 13; 4; 19g builds up a subgroup
for the group G D .Z�21;ˇ/.

We can see this by drawing up a table (Table 1) and using the finite subgroup criteria. For
example in the case of 13ˇ19wefirst have tomake the ordinarymultiplication 13�19 D 247.
Then we have to define the remainder of 247modulo 21. It is 16, since 247 D 21 � 11C 16.

Table 1. .H;ˇ/ is a subgroup for the group .Z�21;ˇ/, whereH is the set of the remainders
in the division 1=21.

ˇ .mod 21/ 1 4 10 13 16 19
1 1 4 10 13 16 19
4 4 16 19 10 1 13
10 10 19 16 4 13 1
13 13 10 4 1 19 16
16 16 1 13 19 4 10
19 19 13 1 16 10 4

Lagrange’s theorem says generally that ifH is a subgroup of a finite groupG, the order
ofH is a factor of the order of G—and this is naturally true in our example: 6 j 12.

In the long division the remainder always unambiguously determines (in accordance
with the division algorithm) both the digit of the decimal expansion and the next remainder.
We could illustrate this process in the following way (see Table 2).

Table 2. Subgroup remainders in the division 1=21, and the decimals they produce.

Subgroup remainder 1 10 16 13 4 19
The decimal of the period 0 4 7 6 1 9

By looking at Table 2, it is clear that if we, by turns, take as dividends the numbers 4,
10, 13, 16, and 19 other than 1 in our subgroup, the decimal expansion must always repeat
cyclically the expansion 1=21 D 0:047619 : : : D 0:047619. Let a D 13, for example. Then
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13=21 D 0:619047 : : : . The period begins thus by 6 which comes from the first remainder
13, and so on. We could glue Table 2 on an adequate cylinder barrel where this phenomenon
would be easy to follow and control. This can also be illustrated by a circle, see Figure 1.

b

b

b

b

b

b

1

0

10

4

16

7

13

6

4

1

19

9

Figure 1. Division 1=21.

Let us next do the long division 2=21where the dividend 2 does not belong to the above
defined subgroup H (but is otherwise a possible dividend considering our assumptions).
Now the remainders are 2, 20, 11, 5, 8, and 17, and they also belong to the set Z�21. They
also build up a left (or right) coset modulo H . The division 2=21 gives us the decimal
expansion 0:095238 : : : D 0:095238 (cf. Table 3). The length of the period is again 6, and
the coset is generated by 2 2 G, for example. Namely,

2ˇH D f 2ˇH j h 2 H g

D f2ˇ 1; 2ˇ 4; 2ˇ 10; 2ˇ 13; 2ˇ 16; 2ˇ 19g

D f2; 8; 20; 5; 11; 17g:

Table 3. Coset remainders in the division 2=21, and the decimals they produce.

Remainders of the coset 2ˇH 2 20 11 5 8 17
The decimal of the period 0 9 5 2 3 8

If we give to the dividend the values 20, 11, 5, 8, and 17 by turns, we always have a cyclic
repetition of 0:095238 : : : D 0:095238. The cardinality of the coset 2ˇH is naturally the
same as the cardinality of the subgroup (and coset) H D 1ˇH . Together these cosets H
(D 1ˇH ), and 2ˇH , give a partition of the set Z�21.

From this, it is clear that the set of all the possible remainders in the division a=21 is
.1ˇH/[.2ˇH/ D Z�21, whose number of elements is �.21/ D 2�6 D 2��, i.e., � j �.21/.
By using Tables 2 and 3, we also have a compact representation for all the possible divisions
a=21. There are certainly many other ways of illustration apart from the tables. In Figure 2
there is a “graph theoretic” picture of the phenomenon.

In Figure 2, if we start from the node 4 (i.e., from the division 4=21) we come by fol-
lowing the arrows into the period 190476, i.e., 4=21 D 0:190476 : : : D 0:190476.

We can generally know more about the length � of the period (in the division of a=b)
than that � j �.b/; i.e., � D ordb.10/, the order of 10 modulo b, which will be shown
later. Let us come back to the case b D 21. We can straightforwardly find the order of 10
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b
2

b 20

b
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b

5

b
8

b17

0

9

52
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b

13
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4
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0
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1

9

Figure 2. The division a=21 represented as directed graphs. The nodes represent all the
possible dividends a; by following the arrows we can get the periods of all of the divisions
a=21.

modulo 21 by studying the remainders of the powers 101, 102, etc. modulo 21. We have
found the order when the remainder D 1. So: 10 D 21 � 0C 10; 102 D 100 D 21 � 4C 16;
103 D 21 � 47C 13; 104 D 21 � 476C 4; 105 D 21 � 4761C 19; 106 D 21 � 47619C 1. Thus
the order we search is 6, and it is same as �. (In fact, it is easier to find the order by means
of congruence; however, we have not done so here.)

Obviously, it is generally true that for the maximum length � of the periodicity (in a=b)
the divisor b must be a prime number. This comes from the fact that �.b/ D b � 1 if b is
a prime. If b is not a prime, then �.b/ < b � 1; i.e., it is impossible to get the “theoretical
maximum” of �. However, as we have seen, a prime number b as a divisor is not a sufficient
condition for getting the maximum length.

4. Some preliminary task ideas for different grades

4.1. Grades 1–5

As stipulated in the Grounds of the National Curriculum in Finland [7], the decimal system
and the division are taught as early as in grades 1–2. In grades 3–5, divisibility is dealt
with more generally, and connections between common fractions and decimal fractions are
taught. The negative integers are also presented, so at least the teacher could recall concepts
like a group, subgroup and coset. For instance the integers 5k give a subgroup and one coset
to the group of integers (equipped with addition and which naturally is not finite). The forms
5k C 1, 5k C 2, 5k C 3, and 5k C 4 give correspondingly the four other cosets. Together,
these cosets divide the integers into five disjoint parts.

Thus there should in principle be no barriers to a presentation of many relevant aspects
of our approach in grades 1–5. In connection with divisibility it is not at all strange to speak
about the greatest common divisor of two positive integers. Then the basic assumptions
concerning our approach could be easily displayed, too. It is one of the learning goals in
grades 3–5 that the pupil learns “by examining and observing to construct mathematical
concepts and concept systems”. For example the idea of the Euler totient function �.b/ is
perfectly near if there is some systematic approaching to the divisions of a=b. We first have
to fix b and restrict ourselves to the interval 1 � a < b (which is not an essential restriction)
so that gcd.a; b/ D 1. Then we have to ask how many acceptable dividends a there are. It is
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good in this kind of material to keep b alternatively as a prime and as a composite number—
notwithstanding the fact that these concepts are theoretically unknown to the pupils.

We believe that the long division is mostly seen as an interesting and effective tool in
grades 1–5. From the point of view of the subject matter of this article the pupils would
do well to process the divisions 1=7, 2=7, 3=7, 4=7, 5=7, and 6=7, for example, and realize
the cyclicity of the results. They could also work hard on the divisions 1=13, 2=13, : : : ,
12=13, and realize that the situation there is a bit more complicated. They could collect
these considerations as tables 2 and 3, or graphs. A suitable use of colors would probably
add to the clarity.

The more general idea of periodicity is not difficult either to treat in these grades. The
repetition of week days is familiar to all, for example. The teacher could make the pupils
also to chart other common repeating phenomena. The character of the (non-terminating)
periodic decimal expansion is, no doubt, challenging in many ways, so the teacher has to use
the imagination, too. Transforming fractions into the decimal forms is usually credited with
easier calculating as calculating with fractions. But this kind of motivation hardly works in
the case of a periodic expansion like (iii).

4.2. Grades 6–9

Our curriculum [7] for grades 6–9 includes preparing motivation for proving through the
use of grounded conjectures, experiments and counterexamples. In the field of numbers and
operations with numbers for instance the following areas are handled: rational and real num-
bers, opposite and reciprocal numbers, prime factorization, canceling (reducing) fractions,
and representing decimals as fractions.

Here are some task ideas for grades 6–9 featuring our approach.

1. Fix b so that gcd.b; 10/ D 1, and find �.b/. (The teacher does not have to tell anything
about the Euler totient function; he or she may note, for example, about the number of
all possible canceled forms a=b with 1 � a < b.) After finding �.b/ you have to reflect
on the results of the divisions a=b (without calculators, too) by doing first 1=b. If the
length � D �.b/ in this decimal expansion you have to test that other choices for the
dividend a also give a cyclic repetition of the result of 1=b. Draw up a table or a graph
of the results.
If � < �.b/ by dividing �.b/with the number � you will find out the number of cosets in
the multiplicative group of Z�

b
. Take one representative a0 of each coset, and do the divi-

sions a0=b. Draw up the tables, graphs or other illustrations to get a compact presentation
for all divisions a=b.

2. Explain why the length of the period by division a=b does not depend on the dividend a.

3. Demonstrate that b being a prime does not guarantee the maximum length b � 1 of the
period in the division a=b.

4. Find all primes p < 100 which generate the maximal length p � 1 of the period by the
divisions 1=p.

5. Is it possible to get the maximal length of the period by the division a=b if b is a com-
posite number? Examine and explain.
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4.3. Upper secondary school

Our national curriculum for upper secondary school encourages experimental, invention-
oriented, and investigatory action (in the long and short syllabus alike; [6]). In the first
courses at upper secondary school a revising and complementing review of the different
number domains is conducted. There is also a special optional course onNumber Theory and
Logic including divisibility, division algorithm, congruence and the fundamental theorem
of arithmetic. The Euler totient function could be taught here properly. Small tasks in this
context could be, e.g., inventing formulas for cases �.p/, �.pk/, �.p � q/ where p, q are
different primes, �.m �n/ if gcd.m; n/ D 1. That �.b/ is even for b > 2would be a little bit
bigger assignment. Incidentally, the new course on number theory, logic, and algebra could
be useful, too.

In the studying of congruence it could be possible to examine the sum of the elements
of the reduced residue system modulo b, and show that it is a multiple of �.b/. The reduced
residue system modulo b as a multiplicative group (without a word of the group concept)
could also be dealt with. An experimental, invention-oriented, and investigatory working
model should be applied.

Below you will find a couple of examples of more demanding assignments.
1. Show experimentally that through the forms

1

99 : : : 9
and

1

11 : : : 1

you can generate as long periods as you want. Why?

2. If you want to get, say, a length 7 of periodicity, you can also look at the number 107 �
1 D 9999999. Let us find its prime factorization (by Wolfram Alpha, for example):
9999999 D 32 � 239 � 4649, and, further all its positive factors 1, 3, 9, 239, 717, 2151,
4649, 13947, 41841, 1111111, 3333333, and 9999999. You can use as b all the factors
except for the first three ones. How could you produce systematically integers b so that
their reciprocals 1=b would generate a decimal expansion of type (iii) and the length of
periodicity would be the one you want?

3. We saw above that 1=717 produces an expansion where the length of the periodicity
is 7. The expansion itself is 0:0013947 : : : D 0:0013947. Now �.717/ D 476, and
476=7 D 68, so the group Z�717 has 68 cosets with 7 elements, concerning the division
a=717. Hence there are exactly 476 numbers a so that 1 � a < 717with gcd.a; 717/ D 1
and the length of the periodicity is 7. These expansions are distributed into 68 different
“cyclic classes”.
By the long division we find out the subgroup H D f1; 10; 100; 283; 679; 337; 502g

which generates these classes. Now, gcd.2; 717/ D 1, and 2 … H , so we get the coset 2ˇ
H D f2; 20; 200; 566; 641; 674; 287g modulo 717 by the methods we have used earlier.
Accordingly 674=717 D 0:9400278 : : : D 0:9400278, and 287=717 D 0:4002789 : : : D
0:4002789, i.e., they are cyclic repetitions of each other.
Make a computer program (in a suitable programming environment) which generates the
other 66 cosets.

4. Is it possible to invent a newmethod by which you can transform a given infinite periodic
expansion (without any pre-period) into a fraction? (The “old methods” are based on the
convergent geometric series, and multiplying with the number 10�.)
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5. �.21/ D 12, �.212/ D 252 D 21 � 12, �.213/ D 5292 D 21 � 252 D 212 � 12,
�.214/ D 111132 D 213 � �.21/, etc. Explain what kind of regularity (in the context
of type (iii)) there is in the cases of b D 212, 213, 214, etc., (find � and the number of
cosets in each case). An instruction: Examine the cases 1=212, 1=213, 1=214, etc.

6. Present the themes of periodicity in mathematics curriculum of upper secondary school
as extensively as possible.

7. The concept of irrational numbers. How can you construct infinitely many irrational
numbers by using just one non-terminating periodic decimal expansion, for example, the
expansion 1=21 D 0:047619 : : : ?

8. A wilder idea. What is the basic idea in Hedy Lamarr and George Antheil’s “frequency-
hopping”? Could the theory of the periodic decimal expansions have some similar ap-
plications?

5. Conclusion

We show that decimal expansions of rational numbers have a bearing at all levels of math-
ematics learning, from primary school to university. Our study is related to the notion of
hidden mathematics curriculum introduced by Abramowich and Brouwer in 2003. This im-
portant and profound notion should be discussed more extensively andmore deeply in math-
ematics teacher education. The investigation of hidden threads between school mathematics
and university mathematics could motivate mathematics teacher students also to train ab-
stract mathematical concepts in their university studies. We encourage the readers to go
ahead in this rich field of research and to reveal further examples of mathematical topics
implicitly present in school curricula.

Appendix A. Preliminaries on algebra and number theory

We here present only the concepts and results on algebra and number theory needed in this
article. More comprehensive treatments can be found, e.g., in [5] and [9]. See also [10].

A.1. Group theory

LetG be a nonempty set equipped with a binary operation ? (i.e., ? is a mappingG�G !
G). Then .G; ?/ is said to be a semigroup if .a?b/?c D a?.b ?c/ for all a; b; c 2 G (i.e.,
the binary operation ? is associative). A semigroup is said to be a monoid if there exists an
element e 2 G (an identity) such that a ? e D e ? a D a for all a 2 G. A monoid is said
to be a group if for all a 2 G there exists an element a�1 2 G (an inverse of a) such that
a?a�1 D a�1?a D e. An Abelian group is a group in which a?b D b ?a for all a; b 2 G
(i.e., the binary operation ? is commutative).

A pair .H; ?/ is called a subgroup of .G; ?/ ifH is a nonempty subset of G and .H; ?/
is a group. The finite subgroup criterion says that if H is a nonempty finite subset of G,
then .H; ?/ is a subgroup of .G; ?/ if and only if

8a; b 2 H W a ? b 2 H;

31



IMVI OMEN, 2(2012) Jaska Poranen and Pentti Haukkanen

i.e., if and only ifH is closed under the binary operation ?. Lagrange’s theorem says that if
.G; ?/ is a finite group and .H; ?/ is its subgroup, then

jH j
ˇ̌
jGj ;

i.e., the number of elements inH divides the number of elements in G.
Let .G; ?/ be a group and let a 2 G. Denote

hai D f ak j k 2 Z g:

Then .hai; ?/ is the smallest subgroup of .G; ?/ containing the element a 2 G. The number
of elements in hai is called the order of a in G and is denoted as ord.a/. If there exists an
element a 2 G such that G D hai, then .G; ?/ is said to be a cyclic group and the element
a is referred to as a generator of G D hai.

Let .G; ?/ be a group and let .H; ?/ be its subgroup. We say that the left coset of a 2 G
moduloH in G is the set

a ? H D f a ? h j h 2 H g:

If e is the identity in G, then e ? H D H . More generally, a ? H D H for a 2 H , and
further, a 2 a ?H for a 2 G. The left cosets constitute a partition in the setG, i.e., two left
cosets are either equal or disjoint and their union is G. Furthermore, a ? H D b ? H ,

a 2 b ? H , b 2 a ? H .
Similarly, the right coset of a 2 G moduloH in G is the set

H ? a D fh ? a j h 2 H g:

If G is an Abelian group, then a ? H D H ? a for all a 2 G. Each coset (both left and
right) modulo H has the same cardinality. In particular, if H is finite, then the number of
elements in each coset moduloH is the same. IfG is finite, then the number left (and right)
cosets moduloH is jGj = jH j.

A.2. Congruences

Let m be a positive integer (� 2). Then a 2 Z is said to be congruent to b modulo m if
a� b is divisible bym, i.e., ifm j .a� b/. This is denoted as a � b .mod m/. Thus a � b
.mod m/ if and only if a D b Cmk for some k 2 Z.

The congruence relation � .mod m/ is an equivalence relation on Z. The equivalence
classes are referred to as the residue classes modulo m. The residue class determined by a
is denoted as Œa�, and a is termed as a representative of Œa�. The set of all residue classes
modulo m is denoted as Zm. Thus

Zm D fŒ0�; Œ1�; Œ2�; : : : ; Œm � 1�g:

According to the division algorithm, for each a 2 Z there exist unique numbers q and r
such that a D mq C r with 0 � r < m. The number q is termed as the quotient, and the
number r is termed as the remainder. It is clear that

Œa� D Œr�

and more generally
Œa� D Œb�, a � b .mod m/:
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Thus the representative a of the class Œa� can be replaced with any number congruent to a
modulo m, for instance, with the remainder r of a modulo m.

Addition on Zm is defined as

Œa�˚ Œb� D ŒaC b�;

where Œa�, Œb� 2 Zm. This is referred to as the addition modulo m. Now, .Zm;˚/ is an
Abelian group. In this paper we do not, however, need addition modulo m; we need multi-
plication modulo m, which we introduce below.

Multiplication on Zm is defined as

Œa�ˇ Œb� D Œab�;

where Œa�, Œb� 2 Zm. The multiplication on the right-hand side inside the square brack-
ets is the usual multiplication of integers while the multiplication on the left-hand side is
the multiplication on Zm or the multiplication modulo m defined here. Now, .Zm;ˇ/ is a
commutative monoid. An element Œa� 2 Z possesses an inverse in .Zm;ˇ/ if and only if
.a;m/ D 1, where .a;m/ D gcd.a;m/, the greatest common divisor of a andm. We denote
by

Z�m D f Œa� 2 Zm j .a;m/ D 1 g

the set of invertible elements in Z. Now, .Z�m;ˇ/ is an Abelian group, the multiplicative
group modulo m.

The Euler totient function � is defined by

�.m/ D jf a W 1 � a � m; .a;m/ D 1 gj ; m 2 ZC;

i.e., �.m/ is the number of elements in Z�m or the number invertible integers modulom. An
arithmetical expression for the Euler totient function � is given as

�.m/ D m
Y
pjm

�
1 �

1

p

�
;

where p goes through all primes dividing m. In particular, �.pk/ D pk � pk�1 for prime
powers pk with k � 1.

Let a and m (> 1) be relatively prime integers, that is, .a;m/ D 1. Then, according to
Euler’s theorem, a�.m/ � 1 .mod m/. Therefore there exists at least one positive integer x
such that ax � 1 .mod m/. The order of amodulom is the least positive integer x satisfying
this property and and is denoted as x D ordm.a/. In the language of group theory, ordm.a/
is the order of a in the multiplicative group Z�m modulo m. Thus ordm.a/ divides �.m/ on
the basis of Lagrange’s theorem. More generally, for i; j � 0,

ai � aj .mod m/ ” i � j .mod ordm.a//:

As an example we find ord7.2/. It is easy to see that

21 � 2 .mod 7/; 22 � 4 .mod 7/; 23 � 1 .mod 7/;

and thus ord7.2/ D 3. Further, �.m/ D �.7/ D 6.
A set fn1; n2; : : : ; n�.m/g is a reduced residue system modulo m if .ni ; m/ D 1 for

i D 1, 2, : : : , �.m/, and ni 6� nj .mod m/ for i ¤ j . For example, the sets fn j 0 �
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n � m � 1; .n;m/ D 1 g and fn j 1 � n � m; .n;m/ D 1 g are reduced residue
systems modulo m. The number theoretic concept of a reduced residue system modulo m
is an analogue of the group theoretic concept of the multiplicative group modulo m.

It is known [3] that
�.m/X
iD1

ni D

mX
nD1

.n;m/D1

n D m
�.m/

2
:

Appendix B. Theory of decimal expansions

Each real number x 2 .0; 1/ can be written uniquely as

x D

1X
nD1

qn10
�n
D 0:q1q2 : : : ; (1)

where qn’s are integers in Œ0; 9� so that for each positive integer N there exists an integer
n > N such that qn ¤ 9. The last condition assures that, e.g., the expansion of 1=2 is 0:5,
since the expansion 0:4999 : : : is not appropriate. The expression (1) is referred to as the
decimal expansion of x.

A decimal expansion is said to terminate if there exists a positive integer n0 such that
qn D 0 for all n > n0. The decimal expansion of x 2 .0; 1/ terminates if and only if x 2 Q
and x can be written as

x D
a

b
; 1 � a < b; .a; b/ D 1; (2)

where the prime factors of b are 2 or 5. In other words, b belongs to the submonoid of .Z; �/
generated by 2 and 5. Then x D 0:q1q2 : : : qn0

. For example, 7=50 D 0:14.
A decimal expansion is said to be periodic if there exist integers n0 (� 0) and � (> 0)

such that qnC� D qn for all n > n0. We then write x D 0:q1q2 : : : qn0
qn0C1qn0C2 : : : qn0C�

and say that q1q2 : : : qn0
is the pre-period and qn0C1qn0C2 : : : qn0C� is the period whose

length is �. The decimal expansion of a real number x 2 .0; 1/ is periodic if and only
if x 2 Q and x is not of the form (2). The length of the pre-period depends on .b; 10/,
and no pre-period occurs (or is of length 0) if .b; 10/ D 1. For example, 1=6 D 0:16 and
1=7 D 0:142857. The length of the pre-period and the period of 1=6 D 0:16 are both equal
to 1, and the length of the pre-period of 1=7 D 0:142857 is 0 and the length of its period
is 6. (Note that if an expansion possesses a period of � symbols, then it possesses a period
of t� symbols for each t 2 ZC. In this article, the period of an expansion always means the
shortest period.)

A real number x 2 .0; 1/ is rational if and only if its decimal expansion terminates or
is periodic. For example, the number 0:1010010001000010 : : : is irrational. The number of
0’s between 1’s increases throughout the expansion and thus the expansion is not periodic.

In this article we consider rational numbers of the form

x D
a

b
; 1 � a < b; .a; b/ D 1;

where .b; 10/ D 1, i.e., 2 − b and 5 − b. Then the decimal expansion of x is periodic
with no pre-period. We obtain the decimal expansion x D 0:q1q2 : : : of x applying long
division.
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Consider the long division of 1=b with .b; 10/ D 1. The sequence of quotients is q0, q1,
q2; : : : with q0 D 0. We denote the sequence of remainders as r0, r1, r2; : : : . The remainders
rn possess the recurrence

10rn D bqnC1 C rnC1; n D 0; 1; : : : ;

r0 D 1:
(3)

For example, 1=7 gives

1 D 7 � 0C 1 or 1 D 7 � q0 C r0;

10 � 1 D 7 � 1C 3 or 10r0 D 7 � q1 C r1;

10 � 3 D 7 � 4C 2 or 10r1 D 7 � q2 C r2;

10 � 2 D 7 � 2C 6 or 10r2 D 7 � q3 C r3;

10 � 6 D 7 � 8C 4 or 10r3 D 7 � q4 C r4;

etc.
On the basis of (3),

10rn � rnC1 .mod b/; n D 0; 1; : : : ;

r0 D 1;

giving
rn � 10

n .mod b/; n D 0; 1; : : : :

Let ` D ordb.10/, i.e., ` is the least integer x > 0 such that

10x � 1 .mod b/:

Therefore the remainders are congruent to

1; 10; 102; : : : ; 10`�1; 1; 10; : : :

modulo b. Let L stand for the set of appropriate residue classes modulo b, i.e.,

L D fŒ1�; Œ10�; Œ102�; : : : ; Œ10`�1�g:

Then L is a nonempty subset of Z�
b
, since .b; 10n/ D 1 for n D 0, 1, : : : , ` � 1. Further,

Œ10i �ˇ Œ10j � D Œ10iCj � D Œ10n� 2 L;

where n is the remainder of iCj modulo ` and thus n < `. This shows thatL is closed under
the multiplication ˇ. Thus, according to the finite subgroup criteria, .L;ˇ/ is a subgroup
of the group .Z�

b
;ˇ/. As a matter of fact, L D hŒ10�i, i.e., L is the cyclic subgroup of

.Z�
b
;ˇ/ generated by Œ10�. On the basis of the Lagrange theorem ` j �.b/, where ` D jLj

and �.b/ D jZ�
b
j.

The cosets of .Z�
b
;ˇ/ modulo L are given as

Œa�ˇ L D fŒa�; Œ10a�; Œ102a�; : : : ; Œ10`�1a�g;

where .a; b/ D 1. These are the residue classes modulo b of the remainders in the long
division

a

b
; 1 � a < b; .a; b/ D 1;
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where .b; 10/ D 1. In other words, the remainders are congruent to

a; 10a; 102a; : : : ; 10`�1a; a; 10a; : : :

modulo b in this order. In fact, the remainders rn in the long division of a=b possess the
recurrence

10rn D bqnC1 C rnC1; n D 0; 1; : : : ;

r0 D a

giving

10rn � rnC1 .mod b/; n D 0; 1; : : : ;

r0 D a

and further
rn � 10

na .mod b/; n D 0; 1; : : : :

We next show that ` is also the length of the period of the decimal expansion of a=b. We
know that the length of the period of the sequence of remainders is ` D ordb.10/. Therefore
the length of the period of the decimal expansion � � `. We prove that � D `. The idea of
the proof is conceived from [9]. Let a=b D 0:q1q2 : : : q�. Thus

a

b
D

�q1
10
C
q2

102
C � � � C

q�

10�

�
C

� q1

10�C1
C

q2

10�C2
C � � � C

q�

102�

�
C � � �

D

�q1
10
C
q2

102
C � � � C

q�

10�

� �
1C

1

10�
C

1

102�
C � � �

�
D

�q1
10
C
q2

102
C � � � C

q�

10�

�� 10�

10� � 1

�
D
q110

��1 C q210
��2 C � � � C q�

10� � 1
:

This shows that b j .10��1/ or 10� � 1 .mod b/. Therefore, on the basis of the definition
of the order of an element modulo b, we obtain � � ordb.10/ D `. We have now shown
that � � ` and � � `, which means that � D ` D ordb.10/.

Note that ordb.10/ j �.b/, that is, the length ordb.10/ of the period divides the value
�.b/ of the Euler totient function. Furthermore, the length of the period is equal to ordb.10/
for all rational numbers a=b with .a; b/ D 1 and .b; 10/ D 1.

The cosets constitute a partition of Z�
b
and the number of cosets equals �.b/= ordb.10/.

Consider the decimal expansions of the numbers such residue classes of the numerators
belong to the same coset. Assume that Œa� and Œa0� are two distinct members in Œa� ˇ L.
Then the remainders in the long division of a=b and a0=b are the same and in the same
order but start from a different position. Thus the digits in the decimal expansions are the
same and in the same order but start from a different position.

To be more precise, let a=b D 0:q1q2 : : : q�, and suppose that Œa0� 2 Œa� ˇ L with
1 � a0 < b. Then there exists a unique i D 0, 1, : : : , � � 1 such that a0 � 10ia .mod b/.
Thus the remainders in the long division of a0=b are congruent to 10ia, 10iC1a, : : : , 10��1a,
a, 10a, : : : , 10i�1a; : : : modulo b in this order. Therefore the the decimal expansion of a0=b
is a0=b D 0:qiC1 : : : q�q1q2 : : : qi .
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For example, let a D 1 and b D 7. Then a=b D 1=7 D 0:142857, where Œ1� ˇ L D
L D fŒ1�; Œ10�; : : : ; Œ105�g D Z�7 and � D �.7/ D 6. Further, let a0 D 3. Then Œ3� 2 L and
3 � 101 .mod 7/, from which we conclude that i D 1 and a0=b D 3=7 D 0:q2 : : : q6q1 D
0:428571.
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