
THE SOLUTION OF COMBINATORIAL PROBLEMS USING BOOLEAN
EQUATIONS: NEW CHALLENGES FOR TEACHING

Bernd Steinbach
Freiberg University of Mining and Technology, Germany

steinb@informatik.tu-freiberg.de

Christian Posthoff
The University of the West Indies, Trinidad & Tobago

christian@posthoff.de

Abstract

It will be shown that many finite combinatorial problems can be solved by using Boolean
equations. Therefore, it is necessary to teach how to transform the different problems into this area
in a correct way. We demonstrate the required modeling steps in the first part using very different
interesting examples. It is no longer necessary to develop different solution methods for different
tasks; Boolean equations can uniquely be used. Ternary vectors and ternary arrays are powerful
data structures that help to extenuate the complexity.

Naturally, problems of a reasonable size cannot be solved by hand, therefore existing soft-
ware systems must be used. The application of such a software system can require a huge amount
of details. We show how a simplified environment of the software supports the teaching process
because the key issues can be explored on a reasonable level of abstraction. Both the XBOOLE-
Monitor and a SAT-solver will be used. It must be learned how to use these systems, i.e., the
structure and the working of the systems must be well understood.

It can, however, be that the complexity of the problem is beyond the size of the existing
systems. Then we have the last level that requires an excellent knowledge of Mathematics and
excellent programming skills. We take as an example the rectangle-free coloring of grids using
four colors. The solution of these last problems of the highest level show that only the unified
efforts of Mathematics and Computer Science can solve the problems of the highest complexity.
It is possible to solve problems that could not be solved before in a constructive way. You do not
only know whether solutions exist or not, it is possible to build a very large number of solutions or
even all the solutions.

Therefore, the education of Mathematicians, Computer Scientists and Engineers must take
this necessary cooperation into consideration. To be a specialist in one of these areas is not enough!



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Key words: Artificial Intelligence; Chessboard Problems; Graph Coloring; Four-valued Edge Coloring;
Complete Bipartite Graph; Rectangle-free Grid; Boolean Equation; SAT-solver; Sudoku; Ternary Vector;
XBOOLE; XBOOLE-Monitor; Challenges for Teaching
ZDM Subject Classification: D50, N70, N80, R20, R40

1. Introduction

We want to give here a summary of our longstanding research in the area of Boolean (binary,
logic) equations and reflect the solution methods on teaching requirements. There are, based on
the results of this research, several points which we want to bring up for discussion.

• It will be shown that many combinatorial problems [10, 13, 15, 18, 19] can be transformed
into satisfiability problems (shortly SAT) and solved using the developed models and algo-
rithms. This approach is constructive and very general, no search procedures are involved.

• In many cases, it is not necessary to write down the huge number of clauses of the conjunc-
tive forms which must be solved by a SAT-solver [2]. Based on the explored properties of
the problem, it is possible to generate partial solution sets of the restrictive properties of the
problem.

• As extension of the classical SAT-approach we suggest a new modeling procedure: a two-
phase SAT-solver [12] which utilizes the efficient operations of the programming system
XBOOLE [14, 18]. In the first phase this SAT-solver creates partial solution sets which are
used in the second phase to calculate the final solution without any further testing or special
decisions.

• In many applications the Boolean modeling can be considered as very efficient, and it is
not necessary to develop special algorithms. It is much easier to use a general methodology
based on Boolean equations and ternary vectors.

• Search algorithms disappear more or less completely. The final solutions will be built in a
constructive way.

• In recent years the power of SAT-solvers has been improved. The problems to solve must
be mapped into a single, but often very large, Boolean equation where a conjunctive form is
equal to 1.

The main part of this paper is organized as follows. Section 2. introduces the used Boolean
operations and ternary vectors as the main data structure. Section 3. explains the aim of SAT-
solvers and shows how this task can be solved using ternary vectors. As a first example, we
explain in Section 4. how the Sudoku game can be modeled by Boolean equations and solved
using XBOOLE and the method of a two-phase SAT-solver. Section 5. introduces problems on
a chessboard and encouraged the reader to solve these problems in a similar manner. A wide
field of application of the Boolean problems belongs to graphs. Section 6. shows how both the
requirements and the constraints of a graph-coloring problem can be modeled and solved using the
same approach.

2



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 1. Boolean operations: (a) unary, (b) binary

(a)

complement
(NOT)

x x

0 1
1 0

(b)

conjunction disjunction antivalence implication
(AND) (OR) (EXOR) (IF . . . THEN)

x y x∧ y x∨ y x⊕ y x→ y

0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 1

The exponential complexity in the Boolean domain is a strong challenge in both research
and teaching. Section 7. introduces the problem of the rectangle-free coloring of grids using 4
colors and faces us with the gigantic number of more than 10195 different color patterns in which a
pattern with a special property is searched. Section 8. shows that despite of this extreme complexity
a binary model can be established. Section 9. explains some basic approaches to solve this coloring
problem up to a certain size of the complexity and shows how the knowledge of the detected
restrictions can be utilized for further improvements. Four steps to the final solution of this very
complex problem are reported in Section 10..

Before we conclude this paper in Section 12., we summarize in Section 11. our teaching
experiences in the Boolean domain and point out some challenges for the teaching process in this
domain caused by the strong progress in real applications.

2. Boolean Operations and Ternary Vectors as the Main Data Structure

This paper deals with Boolean values of the set B = {0,1} and uses the usual Boolean
operations of Table 1. The ∧-sign of the conjunction will often be left out like the multiplication
sign in the field of mathematics.

As the next step we introduce the data structure of a ternary vector. Let

x = (x1, · · · ,xn), xi ∈ {0,1,−}, i = 1, . . . ,n ,

then x is called a ternary vector (TV) which can be understood as an abbreviation of a set of binary
vectors. When we replace each− by both 0 and 1, then we get several binary vectors generated by
this ternary vector. In this way, the vector (0−1−) represents four binary vectors (0010), (0011),
(0110), and (0111). A list (matrix) of ternary vectors (TVL) can be understood as the union of the
corresponding sets of binary vectors.

There is a direct relation of ternary vectors with conjunctions of Boolean variables. When
a conjunction C with variables x1, . . . ,xk is given, then we can build a ternary vector t with the
components t1, . . . , tk according to the following coding:

xi : ti = 1 ,

xi : ti = 0 ,

xi missing : ti = − . (1)

3



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

This coding expresses directly on one side the respective conjunction, on the other side the
set of all binary vectors satisfying C = 1.

Example 1 Let be given x1 x2 x3 x5 = 1, then we have t = (101−0) which expresses the two binary
vectors (10100) and (10110).

Hint: It will be assumed that the problem-relevant Boolean space includes the variables
x1,x2,x3,x4,x5.

Let be given two ternary vectors x and y. The intersection of these two vectors (i.e., the
intersection (∩) of the respective two sets of binary vectors) will be computed according to Table
2 which has to be applied in each component of the two vectors. The symbol /0 indicates that the
intersection of the two sets is empty. A sophisticated coding of the three values 0, 1 and − allows

Table 2. Intersection of ternary values

xi 0 0 0 1 1 1 − − −
yi 0 1 − 0 1 − 0 1 −

xi∩ yi 0 /0 0 /0 1 1 0 1 −

the introduction of binary vector operations that can be executed on the level of registers (32, 64
or even 128 bits in parallel). We use the coding of Table 3. The first bit indicates that the variable
has a value 0 or 1 in the ternary vector, the second bit indicates the value itself.

Table 3. Binary code of ternary values

ternary value bit1 bit2

0 1 0
1 1 1
− 0 0

When the three-valued operations for the intersection are transferred to these binary vectors,
then the intersection is empty iff

bit1(x)∧bit1(y)∧ (bit2(x)⊕bit2(y)) 6= 0 . (2)

If the intersection is not empty, then it can be determined by the following bit vector oper-
ations:

bit1(x∩y) = bit1(x)∨bit1(y) , (3)
bit2(x∩y) = bit2(x)∨bit2(y) . (4)

Hint: 0 is the vector where all the components are equal to 0. Hence, by using some
very fast and very simple bit vector operations (available on the hardware level), we can find the
intersection of two ternary vectors.

4



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

3. Basic Approaches of Parallel SAT-Solving

It is the aim of a SAT problem to find at least one assignment of Boolean variables such
that a Boolean expression in conjunctive form becomes true. A conjunctive form means that dis-
junctions (also called clauses) of Boolean variables (some so them can be negated) are connected
by AND-operations. Using ternary vectors as the basic data structure, we are able to calculate all
solutions of SAT-problems directly. We will use the following small example:

(a∨b∨ c)(b∨d∨ e)(a∨d∨ e)(b∨ c∨ e) = 1 . (5)

This equation is equivalent to the system of four single equations:

a∨b∨ c = 1 , (6)
b∨d∨ e = 1 , (7)
a∨d∨ e = 1 , (8)
b∨ c∨ e = 1 . (9)

The first equation (6) now will be transformed into the following ternary matrix (a set, or list, or
array of ternary vectors):

a b c d e
1 − − − −
0 0 − − −
0 1 0 − −

.

This matrix shows all the vectors that satisfy Equation (6). If a = 1, then the values of the other
variables are not important. Alternatively, Equation (6) is satisfied if a = 0 and b = 0. Finally, if
a= 0 and b= 1, then c must be equal to 0 in order to satisfy Equation (6). This construction has the
additional property (advantage) that every pair of vectors of this matrix has an empty intersection,
they are orthogonal to each other, and therefore any double solutions cannot exist. b indicates the
negation of b. It is very characteristic that each vector of the matrix includes more information
than the previous vectors. The number of vectors in the resulting matrix is equal to the number of
variables in the disjunction. In the example, each disjunction has three variables. If we repeat this
procedure for all four equations, then we get the following four matrices as partial solution sets Si:

S1 =

a b c d e
1 − − − −
0 0 − − −
0 1 0 − −

solution of Equation (6),

S2 =

a b c d e
− 1 − − −
− 0 − 0 −
− 0 − 1 0

solution of Equation (7),

S3 =

a b c d e
0 − − − −
1 − − 1 −
1 − − 0 1

solution of Equation (8), and

5



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

S4 =

a b c d e
− 1 − − −
− 0 1 − −
− 0 0 − 0

solution of Equation (9).

In order to get the final solution, these four matrices have to be combined by intersection
(see above). Each line of one matrix has to be combined with each line of the next matrix, empty
intersections can be omitted.

For the first and second matrix, we get, for instance, after some simplifications:

S1∩S2 =

a b c d e
1 − − − −
0 0 − − −
0 1 0 − −

⋂ a b c d e
− 1 − − −
− 0 − 0 −
− 0 − 1 0

=

a b c d e
1 1 − − −
0 1 0 − −
− 0 − 0 −
− 0 − 1 0

,

and the final solution is equal to

S =
4⋂

i=1

Si =

a b c d e
0 0 − − 0
− 0 1 0 1
1 1 − − 1
0 1 0 − −
1 − − 1 0

. (10)

This matrix of ternary vectors represents all solutions of the original SAT-problem. Since
the value − represents 0 as well as 1, the equation has 18 solutions represented by five ternary
vectors.

4. Sudoku as an Example

In recent years a Japanese game with the name Sudoku became very popular. It is played
mostly on a board with 9× 9 cells, but other square numbers are also possible, such as 4× 4 or
16×16 or even 25×25. It is easy to understand and a bit challenging for human beings, and it can
be used comfortably to spend waiting time on airports or similarly. But there are also mathematical
and logical properties that deserve some attention.

There is a square board of, for instance, the size 9× 9. The values 1, . . . ,9 have to be set
such that in each column, in each row and in each subsquare of size 3×3 each value is used once
and only once.

Some values already have been set; these values are the clues. The other values have to be
found according to the existing values. We enumerate the columns from the left to the right and
the rows top-down (as usual for a matrix).

We know at least two papers [8, 25] that are using SAT for the modeling of the game and
existing SAT-solvers for the solution of the problem. These papers used the following approach: a
binary variable xi jk describes the content of the cell (i, j), where i is the index of the row and j is
the index of the column, and 1≤ i, j,k ≤ 9:

xi jk =

{
1 if the value in the cell (i, j) = k
0 if the value in the cell (i, j) 6= k (11)

6



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

5 3 7
6 1 9 5

9 8 6
8 6 3
4 8 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

Figure 1. Example of a 9×9 Sudoku.

The transformation into a SAT-problem uses several steps:

xi j1∨ xi j2∨ xi j3∨ xi j4∨ xi j5∨ xi j6∨ xi j7∨ xi j8∨ xi j9 = 1 . (12)

expresses the requirement that one of the numbers 1, . . . ,9 must be used for the cell (i, j). Such a
disjunction must be written for each cell of the board which results in 81 clauses which must be
satisfied simultaneously.

The second step expresses all the constraints for rows, columns and squares as clauses as
well. For example, for the cell (1,1) and the value 1 in this cell, no other value can be in this cell:

x111→ x112, x111→ x113, . . . , x111→ x118, x111→ x119 . (13)

The same set of clauses must be written for the other values 2, . . . ,9 in the same cell. The
constraints for the first row can be expressed in the same way:

x111→ x121, x111→ x131, . . . , x111→ x181, x111→ x191 . (14)

The constraints for the first column are given as:

x111→ x211, x111→ x311, . . . , x111→ x811, x111→ x911 , (15)

and finally, we must consider the remaining value 1 in the respective square:

x111→ x221, x111→ x231,x111→ x321, x111→ x331 . (16)

Again all these clauses have to be written for all numbers from 1 to 9 and finally for all cells.
By using the rule x→ y = x∨ y the whole set of implications can be transformed into disjunctions
(clauses). The number of all restrictive clauses is equal to 9 ∗ 81 ∗ (8+ 8+ 8+ 4) = 20,412. All
of them must be satisfied together with the single variable clauses of the clue and the 81 clauses
of the requirements at the same time, and this is the problem in SAT-format. Each satisfying set of
values for the binary variables is a solution of the Sudoku.

We will show that this game easily can be modeled by using a logic equation, with ternary
vectors as the most appropriate data structure. Actually, the logic equation does not even have to
be written down, the ternary vectors can be generated directly.

7



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

The constraints can be stated by one single conjunction for each number on each cell:

C111 = x111∧ x112x113x114x115x116x117x118x119∧ x121x131x141x151x161x171x181x191∧
x211x311x411x511x611x711x811x911∧ x221x231x321x331 . (17)

This conjunction describes completely the setting of the value 1 on the cell (1,1) and all
the consequences. There are 729 of such conjunctions which are defined uniquely. It is important
to understand that not only the requirements in terms of 9 variables xi jk are taken into considera-
tion, but the conjunctions Ci jk so that all the consequences resulting from a given setting are used
immediately. The existing knowledge or constraints are directly built into the ternary vectors.

Now we must express the possibilities of the game. In order to do this, we can use one of
the following four types of equations.

1. The equation

C111∨C112∨C113∨C114∨C115∨C116∨C117∨C118∨C119 = 1 (18)

describes that one of the nine values must be assigned to one cell (the cell (1,1) is only an
example).

2. The equation

C111∨C121∨C131∨C141∨C151∨C161∨C171∨C181∨C191 = 1 (19)

describes that the value 1 must be assigned to one of the cells in a row (row 1 and value 1
are only examples).

3. The equation

C111∨C211∨C311∨C411∨C511∨C161∨C711∨C811∨C911 = 1 (20)

describes that the value 1 must be assigned to one of the cells in a column (column 1 and
value 1 are only examples).

4. The equation

C111∨C121∨C131∨C211∨C221∨C231∨C311∨C321∨C331 = 1 (21)

describes that the values 1 must be assigned to one of the cells in a subsquare (the first
subsquare and value 1 are only examples).

Each type of these equations generates a system of 81 disjunctions that must be satisfied at
the same time. They are completely equivalent [19], one system can be selected once and for ever.
Each disjunction consist of nine conjunctions of 29 variables. All the conjunctions are represented
by ternary vectors, and this representation can be generated before any real game which is given
by special settings. Each ternary vector will have 729 components, and all intersections from the
left to the right have to be calculated. Based on (18), we get as a general model of a 9×9 Sudoku
the Boolean equation:

9∧
i=1

9∧
j=1

(
9∨

k=1

Ci jk

)
= 1 . (22)

8



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Three similar equations follow from (20), (19), and (21).
The solution of (22) consists of 6,670,903,752,021,072,936,960 binary vectors of all valid

9× 9 Sudokus [4]. It is not a good idea to calculate such a huge amount of solution vectors and
restrict this set by the clue. A better way is to start calculation of the solution with the knowledge
of the clue. ∧

i jk∈clue

Ci jk = 1 . (23)

The AND-operation of (23) can be calculated using the intersection-operation ISC of XBOOLE
[10, 14, 16]. The result of (23) is a single ternary vector in which the variables xi jk of the clue are
equal to 1, the caused restrictions are manifested by xi jk = 0, and the remaining unknown variables
carry dash (−) values. This start-up procedure significantly reduces both the search space and the
solution time.

The solution of a special Sudoku is defined by the system of equations (23) and (22). After
solving Equation (23), 81 further intersection of Equation (22) must be calculated where each
intersection uses a list of 9 ternary vectors which are specified by the expression in parentheses
of (22). Due to the commutativity of the conjunction, the result does not depend on the order of
these 81 intersections. However, the time for the solution can be significantly reduced when for
the calculation of (22) the cells (i, j) with a small number of remaining dashes are preferred [19].

The solution set S consists of all binary vectors of the length 729 that solve the SAT-problem
of the given Sudoku. Each solution vector includes exactly 81 values 1 which indicate the solu-
tion numbers associated to the cells; the remaining 729− 81 = 648 components of the solution
vector are equal to 0. Thus, by taking the index (i, j,k) of the values 1 in the solution vector, a
representation of the value k in the cell (i, j) of row i and column j can be established.

As a summary, we can see that the solution of the problem has two steps.

1. The first phase covers the modeling of the problem and the calculation of partial solution
sets (or solution candidates). Of course, the first phase depends on the problem to be solved
- in our case any Sudoku game.

2. The second phase mainly considers the different action possibilities and combines these
possibilities by ∨ to partial solution sets. The intersections of these partial solution sets lead
to the final solution.

The advantages of this new approach in comparison with the known traditional SAT-models
can be summarized as follows.

• Solution values are assigned in each step to many variables instead of a single variable by
a SAT-solver. In the case of a 9× 9 Sudoku a single assignment specifies additionally 28
variables of the solution space, and this strongly restricts the remaining search space.

• The knowledge about the problem can be expressed in a compact manner without the need
of distributing to many clauses. The basic requirement of the SAT-solver to prepare the task
in a conjunctive form can be skipped. In the case of a 9×9 Sudoku the general requirements
can be expressed by the conjunction of 81 disjunctive forms of 9 conjunctions each instead
of 81+20,412 = 20,493 clauses in a conjunctive form for the SAT-solver.

9



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

8 0Z0Z0Z0L
7 Z0L0Z0Z0
6 0Z0ZQZ0Z
5 ZQZ0O0L0
4 0Z0ZQZ0Z
3 L0Z0Z0Z0
2 0Z0Z0L0Z
1 Z0ZQZ0Z0

a b c d e f g h

Figure 2. Example of a solution of 9 queens and 1 pawn.

In the case of a 16×16 board the matrix of the partial solution sets required approximately
2 Megabyte. Each row of this matrix includes one value 1, 54 values 0. The remaining values of
the 4,096 variables are filled with dashes. Therefore, we decided to store only the index values
of the elements with the value 0 and 1 and to generate any vector of a partial solution set at the
time when it is required. Without any other changes the problem of a 16× 16 Sudoku that maps
into a problem of 4,096 variables and 111,616 clauses could be solved within about two and a half
minutes.

Alternative approaches to solve a difficult Sudoku were recently published in [19]. Using
an XBOOLE-implementation which utilized the graphics processing unit (GPU) [23] the 44,664
solutions of a 25-clue Sudoku were found in less than one second which is more than 20 times
faster than the SAT-solver clasp-2.0.0-st-win32 [6].

5. Chessboard Problems

Based on this methodology, many other problems have been solved. It will not be very
difficult to apply the same methodology.

1. It is expected that on a chessboard of size n×n with k additional pawns n+k queens can be
placed without threatening each other. Figure 2 shows one solution for one pawn on a board
of the size 8×8.

The pawn interrupts the effective lines of the queens, and the diagram really shows nine
queens on this board. Figure 3 shows the number of solutions depending on the position of
the pawn.

Figure 4 shows finally the result for two pawns, and Table 4 summarizes the experimental
results for chessboards of several sizes.

2. The case of k = 0 is the “normal” problem of arrangements of queens on a chessboard n×n
that has been solved as well up to n = 17.

3. There are many problems asking for minimum and maximum numbers, for instance, how
many bishops are at least required to cover all the fields on a chessboard, or how many

10



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

0 0 0 0 0 0 0 0

0 0 2 4 4 2 0 0

0 2 6 2 2 6 2 0

0 4 2 10 10 2 4 0

0 4 2 10 10 2 4 0

0 2 6 2 2 6 2 0

0 0 2 4 4 2 0 0

0 0 0 0 0 0 0 0

Figure 3. Distribution of the solutions of 9 queens and 1 pawn.

8 0Z0Z0Z0L
7 Z0Z0L0Z0
6 0ZQZ0Z0Z
5 L0Z0OQZ0
4 0Z0L0Z0Z
3 ZQO0Z0L0
2 0Z0ZQZ0Z
1 Z0L0Z0Z0

a b c d e f g h

Figure 4. Example of 10 queens and 2 pawns.

Table 4. Number of variables and solutions for 2 pawns and the maximal number of queens on chessboards
of the size n×n

n # variables # solutions time in seconds

3 9 0 0.00
4 16 0 0.00
5 25 0 0.00
6 36 0 0.00
7 49 4 0.20
8 64 44 0.92
9 81 280 3.31

10 100 1,304 11.09
11 121 12,452 97.21
12 144 105,012 406.07

11



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

bishops can at most be placed on a chessboard without threatening each other etc. These
problems also have been solved on boards of size m×n for many values of m,n.

The readers are encouraged to find the Boolean equations which model these tasks. Having
these equations they will recognize that the support of a computer is necessary for the solution of
the systems of Boolean equations. We suggest to use the XBOOLE-Monitor for this final solution
step. The XBOOLE-Monitor can be downloaded (for free) at

http://www.informatik.tu-freiberg.de/xboole/ .

All information needed to use the XBOOLE-Monitor is given in the help system that is included
in this software. Such tasks are easily understandable and are suitable for teaching the suggested
method in classrooms.

6. Graph Coloring

It is, at a first glance, very surprising that also many graph problems can be solved in this
way. The coloring of graphs is an area with a huge amount of publications. Our methods can be
applied to color any graph, the nodes as well as the edges. As an example, we use the graph called
Birkhoff’s Diamond [11]. The coloring of this graph has been considered as very difficult.

The structure of a graph can be described using an adjacency matrix. A value 1 in the row
i and column j indicates an edge from node i to node j in the graph. In the case of an undirected
graph, we get a symmetric adjacency matrix. The graph Birkhoff’s Diamond has the following
adjacency matrix:

ABD =



0100011100
1010000110
0101000010
0010100011
0001011001
1000101000
1000110101
1100001011
0111000101
0001101110


. (24)

Using this adjacency matrix (24) the partial solution sets can be generated directly. The
logic variables describe whether a certain color is assigned to a node of the graph or not. Hence,
the number of required variables is equal to the product of the number of nodes and considered
colors.

xcn =

{
1 if the color c is assigned to the node n
0 if the color c is not assigned to the node n . (25)

As next we express restrictive rules for the color c and the node i by the conjunction Cci.
We take as an example the assignment of the color c = 1 to the node i = 1: in this case it is not
allowed that:

12



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

5

7

1

6

4

9

2

3

10

8

(a)

5

7

1

6

4

9

2

3

10

8

(b)

Figure 5. Birkhoff’s diamond: (a) uncolored graph, (b) one solution using 4 colors.

1. another color (c = 2,3,4) is assigned to the same node (i = 1), and

2. the same color (c = 1) is assigned to another node (taken from the first row in ABD: i =
2,6,7,8) connected by an edge to the node (i = 1).

In this way we get:
C11 = x11∧ x21 x31 x41 ∧ x12 x16 x17 x18 . (26)

The second phase of the new two-phase SAT-solver is controlled by the requirement clauses.
For graph coloring we have the simple requirement that there must be one color assigned to each
node of the graph. In order to find all allowed assignments of the four colors for the graph of
Figure 5 (a), we must solve the equation:

10∧
i=1

(C1i∨C2i∨C3i∨C4i) = 1 . (27)

The time to solve this equation using the operations UNI and ISC of XBOOLE [10] was less
than a single time-tick (15 ms). Figure 5 (b) shows one of the 576 solutions that have been found.

Two experiments demonstrate the power of this approach. In the first experiment we calcu-
lated all solutions to color Birkhoff’s diamond using three, four or five colors. Table 5 summarizes
these results.

Table 5. Calculation of all solutions to color Birkhoff’s diamond using 3, 4 of 5 colors

number of time in
nodes colors variables solutions seconds

10 3 30 0 0.00
10 4 40 576 0.00
10 5 50 40800 0.02

In the second experiment we created several larger graphs: we combined first two Birkhoff’s
diamonds using some additional edges and thereafter four Birkhoff’s diamonds in a similar way
[11]. Table 6 summarizes these results.

13



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 6. Calculation of all solutions to color the Birkhoff’s diamond and graphs that include two or four
such graphs using 4 colors

number of time in
nodes colors variables solutions seconds

10 4 40 576 0.00
20 4 80 99888 0.20
40 4 160 100800 4.97

HHH
HHH

@
@
@
@
@@

J
J
J
J
J
J
J
J

��
��

��

H
HHH

HH

@
@
@
@
@@

�
�
�
�
��

�
��

�
��

HH
HHHH

t
t
t

t
t
t
t

s1

s2

s3

d1

d2

d3

d4
d1 d2 d3 d4

s1
s2
s3

y y y yy y y yy y y y correct
4-coloring

HHH
HHH

@
@
@
@
@@

J
J
J
J
J
J
J
J

��
��

��

H
HHH

HH

@
@
@
@
@@

�
�
�
�
��

�
��

�
��

HH
HHHH

t
t
t

t
t
t
t

s1

s2

s3

d1

d2

d3

d4
d1 d2 d3 d4

s1
s2
s3

y y y yy y y yy y y y

Incorrect 4-coloring
because

the four edges
{e(s1,d3),e(s1,d4),
e(s3,d3),e(s3,d4)}

are colored by the same
color (blue in this case),

there exists a rectangle
with the same color
in all four corners.

Figure 6. Edge coloring of complete bipartite graphs with four colors: (a) correct, (b) incorrect.

7. Grid Coloring

After we solved several graph problems based on the presented methodology rather easily,
we found by chance the following grid coloring problem [5] (we exchanged m and n to get in
natural order m rows and n columns):

"A two-dimensional grid is a set Gm,n = [m]× [n]. A grid Gm,n is c-colorable if
there is a function χm,n : Gm,n→ [c] such that there are no rectangles with all four
corners the same color."
There are many practical tasks which can be modeled and solved by graph coloring [9].

Table 7. Knowlege about rectangle-free 4-colorable grids: C - 4-colorable, N - not 4-colorable, U - it is
unknown whether this grid of this size is rectangle free 4-colorable

rows columns

10 11 12 13 14 15 16 17 18 19 20 21

16 C C C C C C C C C C C N
17 C C C C C C C U U N N N
18 C C C C C C C U U N N N
19 C C C C C C C N N N N N

14



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Such tasks are, for instance, the frequency assignment of radio stations, the aircraft scheduling to
flights or the state assignment for optimizing finite-state machines. Graph coloring can be done by
assigning colors either to the vertices (as shown above) or to the edges of a given graph. We focus
in the following sections of this paper to the edge coloring of complete bipartite graphs. Such a
graph consists of two disjoint sets of vertices: the source vertices si and the destination vertices d j.

There are different data structures that represent a bipartite graph. We select the adjacency
matrix, where the rows represent source vertices and columns represent destination vertices. Three
further properties specify the studied complete bipartite graph:

1. each source vertex is connected with each destination vertex by an edge,

2. each edge is colored by exactly one of the four colors,

3. it is not allowed, that all edges of any quadruple of edges

{e(s1,d1),e(s1,d2),e(s2,d1),e(s2,d2)}

are colored by the same color.

These three conditions mean in terms of the used data structure that all positions of the
adjacency matrix must be colored by one of the four colors, and it is not allowed that in the four
cross points of any pair of rows and any pair of columns the same color appears. It should be noted
that due to the third property mentioned above a tight relationship to bipartite Ramsey numbers [7]
exists. A comprehensive theory for such a grid coloring with regard to several fixed numbers of
colors is published in [5].

Until now it was unknown whether there is a rectangle-free 4-colorable grid of the size
17× 17, 17× 18, 18× 17, or 18× 18. When the complexity of the problem will be considered,
then the grid G18,18 has 18 ∗ 18 = 324 positions, and one of the four colors must be selected for
each of them. Hence, there are 4324 = 1.16798∗ 10195 different patterns in which one of the four
colors is assigned to each of the 18×18 positions of the grid. Assume we are able to evaluate one
pattern in one nano-second (10−9 seconds) and we spend 100 years (3∗109 seconds) then we must
repeat the job 3.8 ∗ 10176 times in order to know whether there is an allowed color pattern and if
YES which valid color pattern exists. So we see that we are going to solve an extremely complex
problem. Because a problem of such a complexity never has been solved before, we describe the
solution more in detail. These details can be adopted to teach students approaches to solve similar
extremely hard problem. The complexity also shows that a simple computer program will not do
the job; many additional considerations are necessary which require deep knowledge in the fields
of computer science and mathematics.

8. Binary Model of Rectangle-Free 4-Colorable Grids

The four colors can be represented by the four values 1,2,3,4. Internally the computer
works with binary values. Hence, we have to map the four-color value into the Boolean space. The
four-color values of a single grid element x can be expressed by two Boolean values a and b. Table
8 shows the used mapping. Function (28) depends on eight Boolean variables and has a Boolean
result that is true in the case that the colors in the corners of the rectangle selected by the rows

15



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 8. Mapping of the 4-valued color x to 2 Boolean variables a and b

x a b

1 0 0
2 1 0
3 0 1
4 1 1

ri and r j and by the columns ck and cl are equal to each other. Each conjunction in this function
represents the rectangle condition for one color. The index ecb of Function (28) means equal color
binary.

fecb(ari,ck ,bri,ck ,ari,cl ,bri,cl ,ar j,ck ,br j,ck ,ar j,cl ,br j,cl) =

(ari,ck ∧bri,ck ∧ari,cl ∧bri,cl ∧ar j,ck ∧br j,ck ∧ar j,cl ∧br j,cl)∨
(ari,ck ∧bri,ck ∧ari,cl ∧bri,cl ∧ar j,ck ∧br j,ck ∧ar j,cl ∧br j,cl)∨
(ari,ck ∧bri,ck ∧ari,cl ∧bri,cl ∧ar j,ck ∧br j,ck ∧ar j,cl ∧br j,cl)∨
(ari,ck ∧bri,ck ∧ari,cl ∧bri,cl ∧ar j,ck ∧br j,ck ∧ar j,cl ∧br j,cl) (28)

The conditions of the rectangle-free 4-color problem on a grid Gm,n are achieved when
Function fecb (28) is equal to 0 for all rectangles which can be expressed by:

m−1∨
i=1

m∨
j=i+1

n−1∨
k=1

n∨
l=k+1

fecb(ari,ck ,bri,ck ,ari,cl ,bri,cl ,ar j,ck ,br j,ck ,ar j,cl ,br j,cl) = 0 . (29)

It is very important to know that this equation is a correct model. Each solution of this
equation is a solution of the problem. From the solution of Equation (29) we know immediately
whether there is no solution, one solution or more solutions. However, it is extremely hard to solve
Equation (29) for m = 18 rows and n = 18 columns.

9. Basic Approaches and Results

9.1. Solving Boolean Equations

In order to solve the highly complex coloring problem we need deep knowledge of its
properties. Very often you can find the opinion that it is only necessary to have a good computer
and a good programmer, and then the rest is done without any further problems. Here it is easy to
see that this opinion only holds up to a given size of the problem. The complexity 2648 ≈ 10195 is
far beyond imagination to yourself, and it is a good reason to stop any further approaches to the
problem. On the other side the constructive solution of such a problem eliminates the reasoning
that problems with exponential complexity are considered as intractable.

The Boolean equation (29) can be completely solved for small grid sizes. The representa-
tion by ternary vectors of XBOOLE [10, 14, 18] helps to restrict the required memory. Table 9
shows the detailed results for the grids of two to seven rows (labeled by r) and of two columns (la-
beled by c). The column labeled by v gives the number of Boolean variables of Equation (29). The

16



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 9. Solutions of the Boolean equation (29)

r c v TV solutions forbidden ratio

2 2 8 24 252 4 1.56
3 2 12 304 3,912 184 4.49
4 2 16 3,416 59,928 5,608 8.56
5 2 20 36,736 906,912 141,664 13.51
6 2 24 387,840 13,571,712 3,205,504 19.11
7 2 28 4,061,824 201,014,784 67,420,672 25.12

column labeled by TV enumerates the number of ternary vectors needed to express the solutions
given in the next column. The benefit of the ternary representation is obvious. Because XBOOLE
uses orthogonal ternary vectors it is easy to calculate the number of all solutions.

The number of all possible color patterns is defined by 4r∗c which is equal to 2v, the power
of 2 to the number of variables v. The difference between 2v and the number of solutions is equal
to the number of forbidden color patterns. The column ratio in Table 9 gives the percentage of the
number of forbidden patterns divided by all 2v possible color patterns.

For the simplest grid G2,2 almost all of the 28 = 256 color patterns are correct solutions.
Only the four patterns specified by Function (28) are forbidden. The forbidden fraction of 4-
color patterns of G2,2 is only 1.56%. This ratio grows to more than 25% for the grid G7,2. That
means that the number of forbidden patterns grows stronger than the number all possible 4-color
patterns by enlarging the size of the grid. From this observation we learn that there must be a
4-colorable grid Gm,n with the property that at least one of the grids Gm+1,n or Gm,n+1 is not
rectangle-free 4-colorable. The practical results of Table 9 confirm the theory of [5] that forbidden
color patterns grow even stronger than the exponential growth of the number of possible color
patterns for growing numbers of rows and columns of the grid.

9.2. Exploit Permutations of Colors, Rows, and Columns

The limit in the previous approach was the required memory of about 800 Megabytes to
represent the solution of the grid G7,2 which could be calculated in less than 5 seconds. To break
the limitation of memory requirements we exploited some heuristic properties of the problem:

1. Knowing one single solution of the 4-color problem, 4! = 24 permutations of this solution
with regard to the four colors are also solutions.

2. The permutation of rows and columns of a given solution pattern creates another pattern that
is a valid solution, too.

3. A nearly uniformly distribution of the colors in both the rows and the columns is given for
the largest number of rectangle-free 4-colored grids.

Hence, in [22] we applied a heuristic which restricts to the calculation of such solutions having a
single fixed uniform distribution of the colors in the top row and in the left column. We restrict in
this experiment the calculation to 12 columns and 2 Gigabytes of available memory.

17



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 10. Selected solutions of the Boolean equation (29) with fixed uniform distribution of the colors in
the top row and in the left column

r c v TV solutions

2 2 8 1 4
2 12 48 6,912 2,361,960
3 2 12 1 16
3 8 48 4,616,388 4,616,388
4 2 16 1 64
4 5 40 674,264 12,870,096
5 2 20 1 256
5 4 40 573,508 12,870,096
6 2 24 4 960
6 3 36 15,928 797,544
7 2 28 16 3,600
7 3 42 183,152 104,93,136
8 2 32 64 3,600
8 3 48 2,152,819 136,603,152
9 2 36 256 50,625

10 2 40 768 182,250
15 2 60 147,456 104,162,436
19 2 76 6,553,600 14,999,390,784

1
2

2
1

1
2

2
2

1
2

2
3

1
2

2
4

Figure 7. The selected rectangle-free 4-colored grids G2,2 of the first row in Table 10.

Table 10 shows selected results of the explained restricted calculation repeated from [22].
Figure 7 depicts the four selected rectangle-free 4-colored grids of the first row in Table 10. Using
the same memory size, the number of Boolean variables could be enlarged from 28 for G7,2 to
76 for G19,2. That means, by utilizing properties of the 4-color problem mentioned above, we
have solved a problem that is 248 = 281,474,976,710,656 times larger than before, but again the
available memory size restricts the solution of larger rectangle-free 4-colorable grids [22].

9.3. Exchange of Space and Time

Function (28) describes the forbidden patterns of a single rectangle. All rectangles are
specified by all possible pairs of rows and all possible pairs of columns. Hence, there are

nr(m,n) =
(

m
2

)
∗
(

n
2

)
(30)

rectangles labeled by all_rect in the following program fragments. The conditions of these

18



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

for(i = 0; i < all_rect; i++)
aps = DIF(aps, f_ecb[i]);

for(i = 0; i < all_rect; i++) {
aps = DIF(aps, f_ecb[i]);
if(NTV(aps) > SplitLimit) {

SPLIT(aps, aps0, aps1);
aps_stack.PUSH(aps1);
position_stack.PUSH(i);
aps = aps0;

}
if(NTV(aps) == 0) {

aps = aps_stack.POP();
i = position_stack.POP();

}
}

(a) (b)

Figure 8. Iterative approach: (a) with unrestricted space requirements, (b) with restricted space require-
ments.

rectangles must be excluded from all patterns of the Boolean space B2∗m∗n which can be calculated
using the DIF-operation of XBOOLE [10, 14, 18].

The XBOOLE-operation C=DIF(A,B) calculates the set difference C = A\B = A∩¬B for
the given TVLs A and B such that as much as possible dash elements of A remain in the result C. We
use the DIF-operation of XBOOLE to solve the grid coloring problem. Assume aps is the actual
partial solution which is initialized by the whole Boolean space B2∗m∗n; then the core algorithm of
Figure 8 (a) solves the rectangle-free 4-coloring problem when unrestricted memory space can be
used.

It is an important drawback of the approach of Figure 8 (a) that the size of aps typically
increases extremely up to a certain index i and decreases later on. Therefore, we implemented
another iterative algorithm that allows us to exchange space and time.

If the extremely large size of aps avoids the next iteration step we split aps into aps0 and
aps1, solve both sub-problems sequentially, and combine both solutions at the end. This approach
can be repeatedly utilized as shown in Figure 8 (b). In this algorithm we use additionally the
NTV-operation of XBOOLE. The NTV-operation returns the number of ternary vectors of the given
TVL. The SPLIT-operation splits the given TVL aps approximately in the middle into the TVLs
aps0 and aps1. Two stacks with the access operations PUSH and POP are used as storage for the
recursive calculation.

We applied the algorithm of Figure 8 (b) to grids of 12 rows, used a fixed value SplitLimit
= 400, and canceled the calculation when the first solutions were found.

The approach of exchanging space and time allows us again an extreme improvement: so-
lutions for rectangle-free 4-colored grids which are modeled with up to 384 Boolean variables
were found instead of 76 variables in the second (already improved) approach. This means that the
approach of exchanging space and time for the 4-color grid problems allows us solving problems
which are 2308 = 5.214812∗1092 times larger than before [22].

19



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 11. Sequential solution using the algorithm of Figure 8 (b) canceled in the case of a non-empty
solution set

rows columns variables ternary vectors solutions maximal stack size

12 2 48 337 6,620 3
12 3 72 147 2,423 22
12 4 96 319 7,386 30
12 5 120 236 1,188 47
12 6 144 181 1,040 61
12 7 168 231 627 69
12 8 192 109 413 81
12 9 216 72 227 79
12 10 240 34 103 87
12 11 264 40 109 88
12 12 288 112 293 82
12 13 312 51 81 81
12 14 336 82 1,415 97
12 15 360 1 1 80
12 16 384 2 3 81

The time to solve the 4-color grids of Table 11 were less than 1 second until 12 columns,
less than 3 seconds until 15 columns, and grows to 427 seconds for 16 columns. An approach to
reduce the required time is given by parallel computing [24].

10. Steps to Solve all Rectangle-free 4-colored Grids up to the Size 18×18

10.1. Applying SAT-solvers

The power of SAT-solvers [2] has been improved over the last decades forced by several
SAT-competitions. We tried to solve the rectangle-free 4-color grid problem using the best SAT-
solvers from the SAT-competitions of the last years. Equation (29) can be easily transformed into
a SAT-equation by negation of both sides and the application of De Morgan’s law to the Boolean
expression on the left-hand side. In this way we get the required conjunctive form for the SAT-
solver (31).

m−1∧
i=1

m∧
j=i+1

n−1∧
k=1

n∧
l=k+1

fecb(ari,ck ,bri,ck ,ari,cl ,bri,cl ,ar j,ck ,br j,ck ,ar j,cl ,br j,cl) = 1 . (31)

Table 12 shows the required time to find the first solution for square rectangle-free 4-colored
grids G12,12, G13,13, G14,14, and G15,15 using the SAT-solver clasp [6], lingeling [1], plingeling [1],
and precosat [1]. Figure 9 shows the 4-colored grid G15,15 found by clasp within 46 and a half
minutes.

From the utilization of the SAT-solvers we learned that:

20



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

Table 12. Time to solve square rectangle-free 4-colored grids using different SAT-solvers

rows time in minutes:seconds
columns variables clasp lingeling plingeling precosat

12 288 0:00.196 0:00.900 0:00.990 0:00.368
13 338 0:00.326 0:01.335 0:04.642 0:00.578
14 392 0:00.559 0:03.940 0:02.073 0:00.578
15 450 46:30.716 54:02.304 73:05.210 120:51.739

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz

zzzzzzzzzzzzzzz
Figure 9. Rectangle-free 4-colored grid G15,15 found by the SAT-solver clasp in about 46.5 minutes

1. SAT-solvers are powerful tools that are able to solve rectangle-free 4-colored grid up to
G15,15,

2. it is not possible to calculate a rectangle-free 4-colored grid larger than G15,15 directly.

The reasons for the second statement are first that the search space for the 4-colored grid G16,16 is
262 = 4.61∗1018 times larger than the search space for the 4-colored grid G15,15, and second that
the fraction of the 4-colorable grids is reduced for the larger grid even stronger. We take as base of
the time measurement the age of our planet which is about 4 billion years (4 ∗ 109 years). Based
on the measured time to find the first rectangle-free 4-colored grid G15,15 and knowing the larger
search space it can be estimated that it takes approximately 10,000 times the age of the Earth to
find a rectangle-free 4-colored grid G16,16.

10.2. Construction of Well-structured Rectangle-free 4-colored Grids G16,16 and G16,20

The found solution for G15,15 of Figure 9 gave us a hint how larger 4-colored grids may be
constructed. The evaluation of the rows and columns over the whole grid shows that the colors

21



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

are nearly uniformly distributed. However, single colors dominate in the sub-grids. Due to the 16
positions in rows and columns of G16,16 and the four allowed colors the sub-grids G4,4 are taken
into account. From our complete solutions for small grids we know that maximal 9 positions can
be occupied by a single color without violation of the rectangle-free condition.

Such maximal 1-colored G4,4 grids cannot be repeated in rows or columns, but in diagonal
order. In this way, a G8,8 grid can be dominated by two colors. In such a structure both red-
dominated G4,4 sub-grids can be extended by a single position of color green. Vice versa both
green-dominated G4,4 sub-grids can be extended by a single position of color red. It remain 8 ∗
8−4∗9−4∗1 = 24 positions which can be filled up with the colors blue and yellow, respectively.
An analog G8,8 grid dominated by the colors blue and yellow can be built. Similarly, the whole
4-colored grid G16,16 can be constructed using reversed 2-color dominated G8,8 grids. Figure 10
shows the constructed 4-colored grid G16,16 [17].

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz
Figure 10. Rectangle-free 4-colored grid G16,16 constructed using maximal 1-colored sub-grids G4,4

In the sub-grids G4,4 of Figure 10 each pair of rows and each pair of columns is covered
by the dominating color. Hence, in these ranges each color is only allowed in a single position.
Cyclically shifted combinations of all four colors allow the extension of the 4-colored grid G16,16
of Figure 10 to the rectangle-free 4-colored grid G16,20 as shown in Figure 11 [17].

Similarly to the 4-colored grid G16,20 of Figure 11 a rectangle-free 4-colored grid G20,16
can be constructed based on the rectangle-free 4-colored grid G16,16 of Figure 10. Unfortunately,
it is not possible to build a rectangle-free 4-colored grid G17,17 that includes the 4-colored grid
G16,16 of Figure 10.

10.3. Restriction to a Single Color of Rectangle-free 4-colored Grids

Due to the high complexity, a divide and conquer approach may facilitate the solution of
the rectangle-free 4-colored grid G17,17 or even the grid G18,18. The divide step restricts first to

22



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzz
Figure 11. Rectangle-free 4-colored grid G16,20 constructed using maximal 1-colored sub-grids G4,4 and
cyclic extension of all four colors

one single color. Due to the pigeonhole principle, at least one fourth of the grid positions must
be covered by the first color without contradiction to the color restrictions. When such a partial
solution is known, the same fill-up step must be executed taking into account the already fixed
positions of the grid. This procedure must be repeated for all four colors.

The advantage of this approach is that a single Boolean variable describes whether the color
is assigned to a grid position or not. Such a restriction to one half of the needed Boolean variables
reduces the search space form 22∗18∗18 = 1.16 ∗ 10195 to 218∗18 = 3.41 ∗ 1097 for the grid G18,18
drastically.

Function fecb (28) which describes equal colors in the corners of a rectangle can be simpli-
fied to fecb1 (32) for a single color in the divide and conquer approach:

fecb1(ari,ck ,ari,cl ,ar j,ck ,ar j,cl) = (ari,ck ∧ari,cl ∧ar j,ck ∧ar j,cl) . (32)

By transformation into a SAT-problem we get:

m−1∧
i=1

m∧
j=i+1

n−1∧
k=1

n∧
l=k+1

fecb1(ari,ck ,ari,cl ,ar j,ck ,ar j,cl) = 1 . (33)

A disadvantage of this approach is that the implicit assignment of exactly one color to
each grid position is lost. The values of the pair of variables (ari,ck ,bri,ck) in the solution of (31)
determine one of the four colors for the position of the row ri and the column ck. The value of the
single variable ari,ck in the solution of (33) determines only whether the chosen color is assigned,
ari,ck = 1, or one of the remaining colors must be used, ari,ck = 0.

The equation fecb1 = 0 has 15 solutions; only the assignment of values 1 to all a-variables
is excluded. One solution of f ecb1 = 1 calculated by a SAT-solver will be the assignment of values

23



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0

Figure 12. Rectangle-free grid G18,18 colored by one fourth of all positions with the first color (1).

0 to all a-variables. This is a correct solution; the chosen color does not conflict with the color
restriction when it is not assigned to any grid position. However, we are not interested in this
trivial solution; we are looking for a solution where the chosen color covers one fourth of the grid
positions. Therefore, a SAT-solver cannot solve this problem directly.

We developed a quite complicated algorithm that allows us to find solutions of (33) with
maximal assignments of values 1. For the sake of space, we must exclude the details of this
approach from this paper. These details are the topic of the paper [21] and summarized in Section
1.5 of [13]. However, the results are important for the following final step to the solution. Using
XBOOLE, we developed a program that implements the mentioned approach and calculated a
rectangle-free assignment of 81 values 1 to the 324 grid positions of G18,18. Figure 12 shows this
single color solution.

Our effort to fill up the rectangle-free 1-colored grid G18,18 of Figure 12 with the second
color on again 81 grid positions failed. This results from the fact that the freedom for the choice of
the positions is restricted by the assignments of the first color. We learned from this approach that
it is not enough to know a correct coloring for one color, these assignments must not constrain the
assignment of the other colors.

10.4. Cyclic Color Assignments of Rectangle-free 4-colored Grids

The smallest restrictions for the coloring of a grid by the four colors are given when the
number of assignments to the grid positions is equal for all four colors. For square grids Gm,n, m =
n, with an even number of m rows and n columns, quadruples of all grid positions can be chosen
which contain all four colors. There are several possibilities of such selections of quadruples. One
of them is cyclic rotation of a chosen grid position by 90 degrees around the center of the grid.

24



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

r1 s1 t1 r2

t4 u1 u2 s2

s4 u4 u3 t2
r4 t3 s3 r3

Figure 13. Cyclic quadruple in a grid G4,4.

Figure 13 illustrates this possibility for the simple grid G4,4. The quadruples are labeled by the
letters r,s, t, and u. The attached index specifies the element of the quadruple.

In addition to the color restriction (33) for the chosen single color we can require that this
color occurs exactly once in each quadruple. This property can be expressed by two additional
rules. For the corners of the grid of Figure 13, for instance, we model as the first rule the require-
ment:

r1∨ r2∨ r3∨ r4 = 1 , (34)

so that at least one variable ri must be equal to 1. As the second rule, the additional restriction

(r1∧ r2)∨ (r1∧ r3)∨ (r1∧ r4)∨
(r2∧ r3)∨ (r2∧ r4)∨ (r3∧ r4) = 0 (35)

prohibits that more than one variable ri is equal to 1.
A SAT-formula can be constructed using (33) and for all cyclic quadruples as illustrated in

Figure 13 both the fitted requirements (34) and the fitted restrictions (35) negated using De Mor-
gan’s laws. The solution of such a SAT-formula for a square grid of even numbers of rows and
columns must assign exactly one fourth of the variables to 1. Such a solution can be used rotated
by 90 degrees for the second color, rotated by 180 degrees for the third color, and rotated by 270
degrees for the forth color without any contradiction.

We generated the cnf-file [3] of this SAT-formula which depends on 324 variables and
contains 23,976 clauses for the grid G18,18 and tried to find a solution using the SAT-solver clasp
[6]. The SAT-solver clasp found the first cyclic reusable solution for the grid G18,18 after 2 days
10 hours 58 minutes 21.503 seconds. Figure 14 shows this solution for the first color of the grid
G18,18.

Using the core solution of Figure 14 we have constructed the rectangle-free 4-colored grid
G18,18 of Figure 15 by three times rotating around the grid center by 90 degrees each and assigning
the next color [13, 17].

Many other rectangle-free 4-colored grids can be created from the solution in Figure 15 by
permutations of rows, columns and colors. Several rectangle-free 4-colored grids G17,18 originate
from the rectangle-free 4-colored grid G18,18; by removing any single row or column we get the
rectangle-free 4-colored grids G17,18 or G18,17. Obviously, several so far unknown rectangle-free
4-colored grids G17,17 can be selected from the rectangle-free 4-colored grid G18,18 of Figure 15
removing both any single row and any single column.

It should be mentioned that the approach of cyclic reusable single assignments can be ap-
plied to the 4-colored square grids of an odd number of rows and columns, too. The central position
must be colored with the first chosen color. Figure 16 shows the principle of the quadruple assign-
ment in this case.

25



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

Figure 14. Cyclic reusable rectangle-free coloring of the grid G18,18.

The SAT-solver clasp found the first cyclic 4-colorable solution for odd grids up to G15,15
in less than 0.6 seconds but could not solve this task for the grid G17,17 within two months.

11. Experiences and new Challenges for Teaching in the Boolean Domain

Teaching in the Boolean domain requires a comprehensive theoretic basis. These topics
comprise areas of the discrete mathematics such as algebraic structures and their properties and
especially the Boolean algebra. Students must know the Boolean operations and transformation
rules of Boolean expressions. An appropriate text book for these studies is [10]. This book starts
from the scratch, provides the required theoretical basis, and extends this basis by the Boolean
Differential Calculus (BDC) to study changes in Boolean systems.

Motivated by the permanent extension of applications, digital circuits are one of main teach-
ing topics in the Boolean domain. Additionally, more general logic applications help the students
to realize the vital importance of comprehensive knowledge in the Boolean domain. Our text book
[10] comprises general logic and arithmetic as well as digital systems. The introduced operations
of the BDC allow us to present the most powerful decomposition methods which are missing in
other text books.

It is state of the art to teach special methods for analysis and design of digital circuits,
starting with combinatorial circuits followed by sequential circuits for finite state machines. The
exponential complexity of Boolean functions and the limited time for exercises restrict the task to
be solved to very small examples of very few Boolean variables. Such examples are far away from
real practical applications. Despite the small number of Boolean variables, the students will notice
the limited abilities of human beings to manipulate the exponential number of Boolean values
without any mistake and they will realize that computers with convenient software are needed.

26



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz

zzzzzzzzzzzzzzzzzz
Figure 15. Rectangle-free 4-colored grid G18,18.

r1 s1 t1 u1 r2

u4 v1 w1 v2 s2

t4 w4 x1 w2 t2
s4 v4 w3 v3 u2

r4 u3 t3 s3 r3

Figure 16. Cyclic quadruple in a grid G5,5.

The software brings us into the field of computer science. Many details in programming
sidetracks the students from the key problems in the Boolean domain. We weaken this problem
by the development of the XBOOLE system [14, 18]. As explained above, sets of binary vectors
or Boolean functions are represented in XBOOLE by ternary vector lists (TVLs). In this way the
bit-level of programming languages is raised to the level of models in the Boolean domain. Both
the ternary representation and the system of many Boolean space with unlimited Boolean variables
weaken the complexity problem.

In order to skip programming skills as much as possible from the teaching process in
the Boolean domain, we developed the XBOOLE-Monitor. The XBOOLE-Monitor works like
a Boolean pocket-calculator. All set operations (which are isomorph to the Boolean operations)
and the derivative operations of the BDC can be executed for sets or Boolean functions represented
as TVL. Many further operations extent the field of applications. An includes help system explains
both the basic concepts and all provided operations. As mentioned above, the XBOOLE-Monitor
can be downloaded (for free) at

http://www.informatik.tu-freiberg.de/xboole/ .

27



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

We have very good experiences in the application of the XBOOLE-Monitor both in lectures
and exercises of courses about digital systems. Because all manipulations on the bit level are
correctly executed by XBOOLE on the bit level, the teaching process can be focused on the level
of algorithms. It is an important benefit for the cognition process of the students that the developed
algorithms do not remain as abstract entity but can immediately transformed into an sequence of
XBOOLE-operations and stored as a text file. We call such a sequence of XBOOLE-operations
problem program (PRP). The XBOOLE-Monitor is able to execute such PRPs so that the solution
of the concrete problem is found and can be verified by the students. The very short time from
an idea across the the algorithm to the final solution of the problem using the XBOOLE-Monitor
allows us to include this method of deep insight directly in our lectures.

The students should engross this method in exercises. Our book [18] contains many tasks
of several fields of applications which can be solved using the mentioned XBOOLE-Monitor. This
book supports the readers (often students) by means of both associated solutions (enumerated at
the end of the same book) and hints to the needed theory given in [10]. Our undergraduate students
successfully use the XBOOLE-Monitor in courses about digital systems.

A key issue of this approach: the students must find an appropriate correct Boolean model.
This starts with the definition of the needed variables. In the case of multiple-valued problems the
binary encoding of multiple-valued variables is necessary. As shown above, the properties of the
problem have strong influence to a convenient encoding. Due to the need of the specification of
intermediate solution sets, the 1-of-n encoding fits well in the case of Sudoku. The most compact
binary encoding restricts the search space in the case of the coloring of large grids. The detection of
both the requirements and the conditions enables the specification of systems of Boolean equations
as a very universal solution approach.

The XBOOLE-Monitor utilizes the underlying XBOOLE-Library. This software library
comprises more than hundred functions which can be used in the programming languages C and
C++. Our students on the master level solve more challenging tasks using the XBOOLE-Library.
As demonstrated in the very complex grid coloring, the students must learn that knowledge of dif-
ferent fields of science must be combined to solve so far open problems. Additionally, the different
skills of human beings and computers must be utilized together. Skills in programming are also
needed to prepare SAT-equations of several thousands of clauses. The analysis of intermediate
results must be recognized as important source for future steps to the solution.

It can be seen that the so-called exponential complexity is not really an argument to put a
problem aside. There are problems where no mathematical proof can be found, but the utilization
of all (including very hidden) properties, correct algorithms and convenient software enables the
final solution.

Do to the wide field of applications the concepts of Boolean equations together with the
respective solution methods and the respective software must be a core concept of many different
courses.

12. Conclusion

We explored in this paper some combinatorial problems with increasing complexity. The
highlights were the coloring of the grids G17,17, G17,18, G18,17, G18,18. Our study has shown that the
fraction of rectangle-free 4-colorable grids of the size 18×18 is extremely small. Hence, finding

28



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

a rectangle-free 4-colored grid G18,18 out of the unimaginably large number of 1.16798 ∗ 10195

possible assignments of 4 colors is significantly more difficult than detecting a single atom within
the whole universe. We successfully verified the presented general approach in our solution of the
last open, even more complicated rectangle-free 4-colored grid G12,21 [20].

We evaluated several approaches, developed and utilized different computer programs, and
combined all the collected knowledge. From all our approaches we learned, neither a fitting default
computer program nor a human being will be able to solve such a highly complex problem, but
commonly we were able to find rectangle-free 4-colored solutions for the grid of the size 18×18
and consequently for all sub-grids.

It can also be seen that the so-called exponential complexity is not really an argument to
put a problem aside. It needs careful considerations how important the solution of this problem
will be in order to justify the solution efforts. It is also very necessary to think carefully about the
organization of the required interdisciplinary cooperation. Mathematics is more applicable than
ever before, but only by an effective cooperation with fields of Computer Science!

A very general approach to solve many different finite discrete problems are their modeling
by Boolean equations. Available software, like the XBOOLE-Monitor, allows everybody to cal-
culate the needed solution. The inclusion of this approach in many courses may help to move the
focus from less important details to key issues. This approach can be generalized for high-level
teaching to solve extremely complex problems.

References

[1] Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. (10/1). Institute
for Formal Models and Verification, Kepler University.

[2] Biere, A., Heule, M. J. H., Maaren, H. van, and Walsh, T., eds. (2009). Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press.

[3] DIMACS. (1993). Satisfiability Suggested Format. 1–8. http://www.domagoj-babic.com/uploa
ds/ResearchProjects/Spear/dimacs-cnf.pdf.

[4] Felgenhauer, B. and Jarvis, F. (2005). Enumerating possible Sudoku grids. 1–7. http://www.afja
rvis.staff.shef.ac.uk/sudoku/sudoku.pdf.

[5] Fenner, S., Gasarch, W., Glover, C., and Purewal, S. (2009). Rectangle Free Coloring of Grids. URL:
http://www.cs.umd.edu/~gasarch/papers/grid.pdf.

[6] Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. (2007). clasp: A Conflict-Driven Answer
Set Solver. 9th International Conference on Logic Programming and Nonmonotonic Reasoning.
Vol. LNAI 4483. LPNMR (pp. 260–265). Springer. Tempe, AZ, USA.

[7] Graham, R. L., Rothschild, B. L., and Spencer, J. H. (1990). Ramsey Theory - Second Edition. New
York: John Wiley & Sons.

[8] Lynce, I. and Ouaknine, J. (2006). Sudoku as a SAT Problem. 9th International Symposium on Arti-
ficial Intelligence and Mathematics.

[9] Marx, D. (2004). Graph Coloring Problems and Their Applications in Scheduling. Periodica Poly-
technica, Electrical Engineering 48(1): 11–16.

[10] Posthoff, C. and Steinbach, B. (2004). Logic Functions and Equations - Binary Models for Computer
Science. Dordrecht, The Netherlands: Springer.

29



IMVI OMEN, 5(2015), 1–30 B. Steinbach and C. Posthoff

[11] Posthoff, C. and Steinbach, B. (2010). The Solution of Discrete Constraint Problems Using Boolean
Models. Proceedings of the 2nd International Conference on Agents and Artificial Intelligence –
ICAART 2010. Filipe, J. and Fred, A., eds. ICAART (pp. 487–493). Valencia, Spain.

[12] Posthoff, C. and Steinbach, B. (2011). The Solution of SAT Problems Using Ternary Vectors and
Parallel Processing. International Journal of Electronics and Telecommunications (JET) 57(3): 233–
249.

[13] Steinbach, B., ed. (2014). Recent Progress in the Boolean Domain. Newcastle upon Tyne, UK: Cam-
bridge Scholars Publishing.

[14] Steinbach, B. (1992). XBOOLE - A Toolbox for Modelling, Simulation, and Analysis of Large Dig-
ital Systems. System Analysis and Modeling Simulation 9(4): 297–312.

[15] Steinbach, B. and Posthoff, C. (2013). Artificial Intelligence and Creativity - Two Requirements to
Solve an Extremely Complex Coloring Problem. Proceedings of the 5th International Conference
on Agents and Artificial Intelligence. Filipe, J. and Fred, A., eds. Vol. 2. ICAART (pp. 411–418).
Barcelona, Spain.

[16] Steinbach, B. and Posthoff, C. (2013). Boolean Differential Equations. Morgan & Claypool Publish-
ers.

[17] Steinbach, B. and Posthoff, C. (2012). Extremely Complex 4-Colored Rectangle-Free Grids: Solu-
tion of Open Multiple-Valued Problems. Proceedings of the IEEE 42nd International Symposium on
Multiple-Valued Logic. ISMVL (pp. 37–44). Victoria, BC, Canada. DOI: 10.1109/ISMVL.2012.12.

[18] Steinbach, B. and Posthoff, C. (2009). Logic Functions and Equations - Examples and Exercises.
Springer Science + Business Media B.V.

[19] Steinbach, B. and Posthoff, C. (2014). Multiple-Valued Problem Solvers – Comparison of Several
Approaches. Proceedings of the IEEE 44th International Symposium on Multiple-Valued Logic (IS-
MVL 2014). (pp. 25–31). Bremen, Germany. DOI: 10.1109/ISMVL.2014.13.

[20] Steinbach, B. and Posthoff, C. (2013). Solution of the Last Open Four-Colored Rectangle-free Grid -
an Extremely Complex Multiple-Valued Problem. Proceedings of the IEEE 43rd International Sym-
posium on Multiple-Valued Logic (ISMVL 2013). (pp. 302–309). Toyama, Japan. DOI: 10.1109/IS
MVL.2013.51.

[21] Steinbach, B. and Posthoff, C. (2012). Utilization of Permutation Classes for Solving Extremely
Complex 4-Colorable Rectangle-Free Grids. Proceedings of the IEEE 2012 International Conference
on Systems and Informatics (ICSAI 2012). (pp. 2361–2370). Yantai, China.

[22] Steinbach, B., Posthoff, C., and Wessely, W. (2010). Approaches to Shift the Complexity Limitations
of Boolean Problems. Proceedings of the Seventh International Conference on Computer Aided De-
sign of Discrete Devices. CAD DD (pp. 84–91). Minsk, Belarus.

[23] Steinbach, B. and Werner, M. (2014). XBOOLE-CUDA - Fast Boolean Operations on the GPU. 11th
International Workshop on Boolean Problems. IWSBP (pp. 75–84). Freiberg, Germany.

[24] Steinbach, B., Wessely, W., and Posthoff, C. (2010). Several Approaches to Parallel Computing in
the Boolean Domain. 1st International Conference on Parallel, Distributed and Grid Computing.
PDGC (pp. 6–11). Jaypee University of Information Technology Waknaghat, Solan, H.P., India.

[25] Weber, T. (2005). A SAT-based Sudoku Solver. TU Munich.

30




