GENERAL EDUCATION REQUIREMENTS

The General Education Committee is currently reviewing the General Education and Additional College Requirements. This outlines current criteria and objectives for 2015-2016.

SPECIFIC DEFINING CRITERIA FOR FACULTY APPLICATIONS FOR GENERAL EDUCATION DESIGNATION OF COURSES

The following criteria are the principal guide used to approve courses for the General Education Program. The course proposal application requires faculty to demonstrate, point by point, how a course meets each of the following criteria. You will also be asked to demonstrate how you propose to assess student learning of the SUNY learning outcomes through your course. Departments and faculty members interested in applying for a General Education designator must complete the application and submit all requested materials as outlined on the form.

Application forms are available in the Faculty section of the General Education web site, http://www.potsdam.edu/academics/general_education/, or from Patty Stone, Administrative Assistant for General Education, Office of Academic Affairs, Raymond Hall 712, Ext. 2108.

SCIENTIFIC INQUIRY (2 courses - minimum 6 credit hours and one lab)

[SB] SCIENTIFIC INQUIRY-BIOLOGICAL SCIENCES
 (minimum of 3 credit hours)
[SP] SCIENTIFIC INQUIRY-PHYSICAL SCIENCES
 (minimum of 3 credit hours)
[LB] LAB
 (one of the SB or SP courses must include a 1-credit lab component)

Studies natural phenomena in the physical and biological sciences empirically and systematically. One course must be selected from each of these two general knowledge areas. At least one course must have laboratory experiences (laboratories, computer simulations, field trips, demonstrations).

The course must:

a. introduce major scientific concepts;
b. show that scientific investigation of a phenomenon progresses systematically with hypotheses, theories, and models being formed, challenged, defended, discarded, and revised;
c. provide experience in forming and testing hypotheses;
d. discuss limitations of a set of data and the possibility of alternative interpretations;
e. distinguish causal and non-causal relationships;
f. use quantitative measures, analyses, and models to present and evaluate data;
g. suggest the limits of scientific investigations and its impact upon society and human existence;
h. distinguish between science and the application of scientific knowledge as exemplified in technology.