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Abstract. The content of this paper stems from an earlier inquiry into the use of 

computers in secondary mathematics teacher education. The advent of the modern day 

digital tools (such as Maple and Wolfram Alpha) capable of sophisticated symbolic 

computations calls for the revision of technology uses set forth in the early years of 

teaching mathematics through problem solving [26]. Nowadays, technology not only 

facilitates problem solving to the extent of making it just “easy”, but provides learning 

opportunities for deeper inquiries into seemingly sealed for non-professional 

mathematical investigations that require formal reasoning. The activities described in the 

article are connected to recent standards for teaching mathematics and recommendations 

for the preparation of teacher candidates published in the United States and elsewhere in 

the world. Through the suggested activities one can appreciate the integration of 

mathematical understanding, conceptual knowledge, procedural skills and technological 

competence. 
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1. Introduction 

The Council for the Accreditation of Educator Preparation [14], a group commonly 

known in the United States as CAEP, recommended that teacher educators strive to “model best 

practices in digital learning and technology applications that EPP [education preparation 

provider] expects candidates to acquire” (p. 30). At the Federal level, those working for an EPP 

have been advised that “computational technology can be a powerful driving force for innovation 

in education … advancing rapidly to the point that it can soon play a transformational role in 

education” [31, p. xi]. Whereas educational innovations, coupled with the modern students’ 

characterization as digital natives [30], can transform classroom pedagogy in many significant 

ways, some studies (e.g., [15], [20]) suggested that being a ‘digital native’ does not mean that 

one is prepared to appropriately use technology in the context of academic work without 

competent guidance of the teacher. One of the implications of those studies in the context of 

mathematics teacher education is the need for new teaching ideas and instructional materials that 

support recommendations for teacher preparation emphasizing the importance of “generalizing, 

finding common structures in theorems and proofs, … and forming connections between 

seemingly unrelated concepts” [12,  p. 56]. By reflecting on an earlier research concerning the 

use of technology in secondary mathematics teacher education through the lenses of newer 

digital tools (Wolfram Alpha and Maple, in addition to the modern spreadsheet), recent standards 

for teaching mathematics [11], [16], [24], [25], [27], [32], [33] and recommendations for teacher 

preparation [8], [9], [12], [14], [19] published in the United States and elsewhere in the world, 

this paper offers several teaching ideas of technology integration that can contribute to the 

advancement and dissemination among EPPs of the best practices of learning in the digital era.   

 

2. Background information and the goals of the paper 

 

In the early 1990s, when working on a paper about the use of technology for teaching 

topics in number theory [6], the first author came across [10] several sequences of numbers, 

among them  

 

                   21, 2211, 222111, 22221111, 2222211111, …           (1) 

and 

                  55, 5050, 500500, 50005000, 5000050000, …            (2) 

 

which were referred to as the sequences of triangular numbers – partial sums of consecutive 

natural numbers starting from one. For example, 1 + 2 + … + 6 = 21 and 1 + 2 + … + 10 = 55 – 

the first terms of (1) and (2), respectively. Yet, already representing their second terms, 2211 and 

5050, as partial sums of consecutive natural numbers requires some conceptual understanding of 

triangular numbers. Such understanding begins with the appropriate contextualization of a 

concept to be introduced. In the modern practice of mathematics education, “the ability to 

contextualize, to pause as needed during the manipulation process in order to probe into the 

referents for the symbols involved” [11, p. 6, italics in the original] is considered an important 

element of students’ procedural fluency, mathematical competence, and conceptual 

understanding. With this in mind, note that creating such sums can be put in context in a variety 

of ways; e.g., by counting handshakes: two people – one handshake, three people – three 

handshakes (1 + 2), four people – six handshakes (1 + 2 + 3), and so on. So, the number of 
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handshakes among seven people is 21, among eleven people – 55. In general, the sum 1 + 2 + 3 

+ … + n represents the number of handshakes among n + 1 people. Alternatively, the number of 

handshakes among n + 1 people can be represented by the fraction n(n + 1)/2 (e.g., counting the 

handshakes twice by using a tree diagram when each of the n + 1 stems supports n branches) 

from where the equality 1 + 2 + 3 + … + n = n(n + 1)/2 results. The case of five people (n = 4) 

handshaking is shown in Figure 1. 

 

 
Figure 1. Counting handshakes twice among five people. 

 

This, in turn, motivates the question: How can one show that the terms of sequences (1) 

and (2) are of the form n(n + 1)/2, that is, are half the product of two consecutive natural 

numbers? For example, factoring 21 yields              Solving the quadratic equation n(n + 

1)/2 = 21 yields   
          

 
 

     

 
    implying that because 1+  21=16 =13

2
 and (-1 + 

13)/2 = 6, the number 21 is the triangular number of rank six. Likewise, solving the equation n(n 

+ 1)/2 = 55 yields   
          

 
 

     

 
    , implying that the number 55 is the triangular 

number of rank ten. In order to verify that this property (the square root of eight times the tested 

number increased by one being an odd integer – known as the square test) holds true for other 

terms of sequences (1) and (2), a spreadsheet had been suggested [6]. This verification was to 

introduce a spreadsheet as a powerful computational tool that can motivate prospective 

secondary mathematics teachers to use technology in the classroom. 

The goal of this paper is to revisit the use of technology in exploring sequences like (1) 

and (2), and to demonstrate how the noted property of these sequences (i.e., being triangular 

numbers) can be a source of new problems called TITE problems [1], [2], [5], [13]. Such 

problems are technology immune (TI), for they may not be solved automatically by software at 

the push of a button. At the same time, they are technology enabled (TE), as their solution and its 

demonstration can be significantly enhanced by the use of technology. The development of TITE 

problems can address “a growing need for new instructional materials … that are aligned with 

higher standards and provide much richer learning experience and more vibrant sources of 

information” [31, pp. 80-81]. Indeed, the didactic duality of TITE problems allows for the 

development of the intellectual vigor enhancing one’s mathematical understanding and 

technological competence when learning not only to solve but also to pose problems makes it 

possible to connect procedural and conceptual knowledge [3], [4]. When solving a problem 

through a pure argument in the digital era, one decides which part of the argument can and may 

be computationally supported. It is this decision that provides one with a problem-posing 
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experience, something that is aligned with higher standards of learning mathematics in 

comparison with the traditional curriculum. Moreover, the TITE problem research and 

development can address a call for “research on new kinds of assessment and new ways to 

develop assessments” [31, p. 91]. In the context of TITE problem solving and posing, this paper 

will demonstrate how one can use the modern-day technology tools not only to find many other 

sequences of that kind, but to uncover an algorithm of generating such sequences through 

conceptual, mathematically informed understanding of the algorithm.  

 

3. TITE problems and  

the Technological Pedagogical Content Knowledge (TPCK) framework 

 

One should not assume that other triangular numbers can serve as seed values allowing 

for the demonstration of the same phenomenon that sequences (1) and (2) reveal. For example, 

28 is a triangular number but 2288 is not. Likewise, 66 is a triangular number but 6060 is not. 

So, an inquiry into such surprising properties of certain classic sequences of natural numbers 

requires conceptual understanding of how their terms develop and which triangular numbers may 

serve as seed values for such sequences. Do the seed values somehow depend on the rank of a 

triangular number? What is special about such ranks? How can one develop other sequences of 

triangular numbers with similar properties? Can other sequences of numbers with repeating 

digits be found to possess specific properties? How can explorations with triangular numbers 

inform the development of such sequences? These and like questions are worth exploring in 

technology-enhanced contexts of problem solving and problem posing.  

Explorations described in this paper can be used in technology-enhanced courses for 

secondary mathematics teacher candidates emphasizing a possibility to connect procedural and 

conceptual knowledge through posing and solving problems in the technological paradigm. 

Conceptualization of an algorithm which is an element of procedural knowledge in mathematics 

is needed for enabling an algorithm to work with computational technology. For example, both 

formulas                and            , recursive and closed, respectively,  

generate the sequence of consecutive triangular numbers starting from one and can be used 

effectively to generate the numbers in the context of a spreadsheet. But what are the rules that 

generate sequences (1) and (2) so that a computer can understand those rules? Such a question 

brings about a TITE problem. It has a TI component for it requires to create an algorithm through 

which sequences (1) and (2) can be generated. The problem has also a TE component for the 

algorithm has to be verified computationally. A computational algorithm is a rule which cannot 

be created without understanding its genesis. As stated in [11], “mathematical understanding is 

the ability to justify, in a way appropriate to the student’s mathematical maturity, why a 

particular mathematical statement is true or where a mathematical rule comes from” (p. 4, italics 

in the original). This statement is echoed in [12] for those developing technology-enhanced 

courses for prospective mathematics teachers, “technology used in superficial way without 

connection to mathematical reasoning, can take up precious course time without advancing 

learning” (p. 57). Put another way, a TITE problem does connect mathematical understanding 

and technological competence. Teacher candidates’ ability to formulate a TITE problem can be 

seen as an important skill that belongs to the TPCK concept [22], [28], allowing the candidates to 

“advance from novice to expert thinking about designing instruction with technology” [7, p. 

162]. 
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4. Two ways of representing numbers with repeating digits 

 

Note that any number of the form        
 

 where 1 ≤ k ≤   is a k-multiple of the number 

       
 

 , which can be represented in two ways: as the sum                , and as the 

fraction 
     

 
 . For example, 111 = 100 + 10 + 1 and     

   

 
 

     

 
 . Consequently, the 

identity  

 

                                                           
     

 
           (3) 

 

can be formulated and be used as a simple context for learning to do proofs.  

While the validity of (3) was demonstrated above for n = 3, its real meaning and purpose 

is to provide an identity of two representations that holds true for all natural numbers n. This 

general demonstration allows one to introduce two ways of proving identities involving sums: 

through actual summation and by the method of mathematical induction. By using the formula 

for the sum of geometric series                   
          

    
 

     

 
 , identity (3) 

immediately results. Assuming that (3) is true, mathematical induction proof consists in the 

demonstration of the inductive transfer, referred to in [29] as transition from n to n + 1, as 

follows 

                           
     

 
 

           

 
 

       

 
,  

showing that (3) remains true when n is replaced by n + 1. This allows one to conclude 

that because identity (3) is true for n = 1, it is true when 1 is replaced by 2, when 2 is replaced by 

3, and so on; that is, in general, it is true for any value of n.  

 While in the case of formula (3) both approaches to proof do not require the use of 

technology, in the case of more complicated identities their proof may require rather involved 

symbolic computations, something that can (and perhaps should) be outsourced to a computer. In 

such cases, proving algebraic identities or other statements depending on an integer variable can 

be considered in the context of a TITE problem solving and posing. Examples of such tasks will 

be discussed below. 

 

5. How many numbers of the form          
 

 are triangular numbers? 

Very few. An answer to this question has been known for more than a century. 

Youngman [34] asked for a proof that the number 666 is the largest triangular number comprised 

of the same digits and two proofs were presented there in response. More specifically, using 

certain concepts of number theory beyond the secondary level, the response was that besides 1, 

3, and 6 (the case n = 1), there are only three more numbers – 55, 66, and 666 – among all 

integers with at most 30 digits. In the context of the present paper, one can consider exploring 

this situation as a TITE problem. Its TI part sets the stage for a TE part. To begin the former part, 

note that in order for the number        
 

 =
        

 
  to be a triangular number, the equation 
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                         (4)                                                                                

             

should have a solution in integers k, m, and n. If such a solution exists, the value of m 

satisfying equation (4) is the rank of a triangular number sought (i.e., the numbers with the digit 

k repeated n times).  

Obviously, the range for a digit k is [1, 9]. When n = 1 we have three (one-digit) 

triangular numbers mentioned above. Let the range for n be [2, 9]. To find the corresponding 

range for m, given the ranges for k and n, one can use equation (4) with the largest values of k = 

9 and n = 9. It follows from (4) that                 whence   
              

 
 

        The above information, obtained within the TI stage of finding triangular numbers with 

the same digit repeating over and over, allows one to move to the TE stage and to construct a 

spreadsheet (Figure 2) which confirms that among the first million integers, the only triangular 

numbers are 55, 66, and 666. By changing the left end point of the segment that shows the range 

for m, the spreadsheet investigation can be extended beyond the first million integers. This 

concludes solving the problem of finding triangular numbers which consist of the same digits.  

 

 
 

Figure 2. The spreadsheet locates 55 and 66 as triangular numbers with the same digit. 

 

 

6. Discovering sequence (1) through collateral learning 

 

While there are very few triangular numbers of the form        
 

 , one can consider such 

integers with repeated digits as the ranks of triangular numbers. The question to explore as a 

TITE problem is: What is special about the triangular numbers with the ranks        
 

 ? To 

answer this question, note that due to the equality         
 

 =
     

 
,  triangular numbers with the 

ranks        
 

 can be written as follows 

    

                             
         

   
  

        

 
    

                    

   
 .                     (5) 

 



IMVI Open Mathematical Education Notes, 7(2017)                                                                        S.Abramovich and M.L.Connell 

 
 

15 
 

One can check to see that when n = 1 and k = 6, the right-hand side of (5) yields 21 – the 

triangular number of rank six. The next step may be to create sequences of triangular numbers 

with the ranks        
 

 for different values of k by using Wolfram Alpha – a computational 

knowledge engine available free on-line and capable of both numeric and symbolic 

computations.  

 To this end, the following simple command has to be entered into the input box of 

Wolfram Alpha: 

Table[k(10
n
-1)(k(10

n
-1)+9)/162, {k, 10}, {n, 10}]. 

The result of computations is shown in Figure 3. In particular, when k = 6 sequence (1) 

results. That is, by exploring triangular numbers the ranks of which consist of the same digits, 

sequence (1) resulted in a collateral learning mode. It is through collateral learning that the fact 

of the entire sequence (1) comprised of triangular number of the ranks         
 

 for all natural 

values of n was discovered. In other words, the appropriate use of technology the preparation for 

which occurs within a TI stage of solving a TITE problem creates conditions for the emergence 

of what Dewey [17] called collateral learning, emphasizing the significance of this kind of 

learning through the following tenet: “Perhaps the greatest of all pedagogical fallacies is the 

notion that a person learns only the particular thing he is studying at the time” (p. 4 ). In the 

context of this paper, by exploring triangular numbers the ranks of which are comprised of 

repeated digits, it was discussed that the numbers presented by sequence (1) are triangular 

numbers the ranks of which consist of the digit 6 only repeated as many times as either of its 

digits. For example, 21 and 2211 are triangular numbers of the ranks 6 and 66, respectively.   

In that way, a closed formula for sequence (1) can be written in the form 
  

                 

   
 

                

 
 . 

 

Setting    
                

 
  yields                         and, therefore, the 

recursive formula for sequence (1) has the form 

 

                             

Note that proving that sequence (1) consists of triangular numbers only was not 

straightforward. It came as a result of exploring numbers generated by the sequences of units; 

that is, the genesis of the problems explored in this paper can be found in this sequence of 

numbers showing the pivotal role of the unity in the development of mathematical concepts. This 

fact is important for prospective secondary teachers to appreciate because the units serve as 

building blocks of mathematics. Below, it will be shown how the discovered characteristic of the 

terms of sequence (1) can be revealed through its direct investigation.  

Furthermore, when k = 3, another interesting sequence of triangular numbers can be 

derived from the table (Figure 3) generated by Wolfram Alpha: 
 

              6, 561, 55611, 5556111, …,        
 

        
 

 , n = 0, 1, 2, … .                    (6) 

Note that sequence (6) is not a part of OEIS
® 

– the On-line Encyclopedia of Integer 

Sequences (www.oeis.org). This allows one to extend the list of the sequences of triangular 

numbers with amazing properties apparently not known before and pose the following problem  
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Prove that sequence (6) is the sequence of triangular numbers. Find the ranks of those 

numbers. Write down the closed and recursive formulas for sequence (6).  

Posing such kinds of TITE problems enhances the existing mathematics curriculum. It 

gives strong justification to the use of technology in the classroom and, more generally, 

facilitates mathematics teaching and learning. Not less important is the fact that technology can 

serve as an agency for collateral learning in mathematical explorations.  

 

 
 

Figure 3. Generating a family of sequences of triangular numbers. 

 

 

7. Conceptualizing the development of sequence (2) 

 

As triangular numbers have the form n(n + 1)/2, one can check to see that the general 

term of sequence (2),         
 

        
 

, where k = 0, 1, 2, …, can be presented as half the 

product of two consecutive integers. We have 

        
 

        
 

           
 

        
 

          +     

            +   
 

 
            +     
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As       and         are consecutive integers, the k-th term of sequence (2) is the triangular 

number of rank      , k = 0, 1, 2, … and the terms    of sequence (2) can be generated through 

the formula 
 

                                         
 

 
                                               (7)  

Formula (7) implies that x0 = 55 and it enables an equivalent representation of sequence 

(2) through the following recursive relation 

                                                                       

(8)  

The transition from closed formula (7) to recursive formula (8) can be confirmed through 

the use of Maple as shown in Figure 4.  

 
 

Figure 4. Maple-based transition from (7) to (8). 

 

Furthermore, using a spreadsheet (or any other computational tool) one can check to see 

that  

1+ 8 ×55 = 21, 1+ 8 ×5050 = 201, 1+ 8 ×500500 = 2001 , 

that is, the square test holds true for the first three terms of (2), and then conjecture that 

                                             
 

        
 

          
 

  .                                         (9) 

In order to prove relation (9), note that           
 

          . Furthermore,  

            
 

        
 

                                          

                      
  

           Therefore, one has to prove the relation 

                                                                    .                    (10) 

A simple transformation of both sides of relation (10) yields an obvious identity 

                                      

which completes proof of relation (9).  

 

It follows from (5) that 
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indicating, once again, that all the terms of sequence (2) are triangular numbers the ranks of 

which are powers of ten; therefore, formula (7) can be used to generate the terms of sequence 

(2). The next step towards a TE component of exploring sequence (2) is to search it in the 

OEIS
®
. By entering a few first terms of the sequence into the search box of the OEIS

®
 one can 

find out that a recursive formula for sequence (2) has the form 

 

                                                                                                  (11)  

One can use Maple (Figure 5) to verify that sequence (11) is indeed a recursive 

formulation of sequence (2) which closed form was found to satisfy formula (7).  

 

 
 

Figure 5. Using Maple in demonstrating the equivalence of (7) and (11). 

 

 
 

Figure 6. Using Wolfram Alpha in generating sequence (12). 
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Likewise, triangular numbers the ranks of which are multiples of the powers of ten can be 

generated. To this end, one can generalize formula (7) to the form  

     
 

 
                                                            (12)  

Note that TE component of a problem may include the use of different software tools. For 

example, a spreadsheet is capable of displaying correctly a number with at most 15 digits. Once 

again, a tool that can complement a spreadsheet is Wolfram Alpha. Figure 6 shows the use of the 

tool in generating sequence (12) for m = 1, 2, …,  . 

 

8. From modeling sequence (12) to exploring the sum of digits concept 

 

One can observe in the data shown in Figure 6 that whatever the value of k, the sums of 

digits of the terms of sequence (12) are the same for a given value of m. The last observation can 

be explained by using different means, e.g., base-ten blocks. Also, noting that the sum of digits, 

SD, of an m-multiple of ten is equal to the sum of digits of the number m, that is, SD(      = 

SD(m), and that                                                       
assuming that the number of digits, ND, of    is at least not greater than 2k – 1, one can write  

                         

                                         . 

For example, for m = 3 we have ND(3) = 1 and the inequality 1 ≤  2k – 1 implies k ≥ 1. So, when 

m = 3 and k = 1 we have  

                                                  
 

                                  

At the same time, for m = 11 we have ND(11) = 2 and the inequality 2 ≤ 2k – 1 yields k ≥ 

1.5; that is, k > 1 in order for 

                                                      .  

Indeed, when m = 11 and k = 1 we have 

                                                 

yet                            On the other hand, for m = 12 and k = 1 we have 

                                          The spreadsheet shown in Figure 

7 is designed to test whether the sum of digits function when applied to a sum of two numbers 

yields the same result when it is applied to each of the addends separately. In this investigation, 

the SD(N) is calculated through the formula 

 

                                                         
 

   
  

             (13) 

 

where INT is the greatest integer function and n = ND(N) – 1. In the spreadsheet of Figure 7 the 

triples of rows (6, 7,  ), ( , 10, 11), …, (1 , 1 , 20), corresponding to the values of k = 1, 2, …, 

5, include the values of           ,         , and                     with the 

corresponding values of m displayed in row 1. Then, by using formula (13), the equality  

                                          is tested and when it does not 

hold true, the number 1 is displayed in row 22. The computations confirm that the last equality 

does not hold true only in the case k = 1 when ND(5m) ≤ 2. 
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Figure 7. Using a spreadsheet in exploring the sum of digits function. 

 

More specifically, one can see that what was described for m = 11 continues for a few 

other odd values of m. Likewise, what was observed for m = 12 continues for other even values 

of m. This shows the complexity of the sum of digits concept as one attempts to generalize and it 

may serve as a source of further investigations into the ideas described in this section. That is, a 

TE part of a problem can then be followed by its TI part, which may be rather challenging. One 

can see how the exploration of sequence (2), or any other computer-based mathematical 

exploration can be organized as a continuous juxtaposition of argument and computation. 

 

9. A direct approach to exploring sequence (1) 

Consider now sequence (1). Computing 

                                         ,

 may prompt one to conjecture that in general 

                                                     
 

       
 

         
 

                               (14) 

The proof of formula (14) can be construed as a TITE problem. It is more complicated in 

comparison with the proof of (4) and it can be carried out with the help of technology. That is, at 

that point one makes a decision about the need to computationally support a pure mathematical 
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argument – a TI component of the problem. To this end, the numbers involved in (14) have to be 

represented in terms of the powers of ten. Indeed, 

 

           
 

       
 

  

                                               

                                                  

                                

                     
    . 

Also, 
 

         
 

                                      
   .  

 

Therefore, one has to prove that 

 

                            
   =              

     .                                       (15) 

Noting that        
             , the last relation can be re-written as  

 

                                                                                     (16) 

and its symbolic proof can be outsourced to Wolfram Alpha or Maple. Figure 8 shows the use of 

Wolfram Alpha in proving identity (16). 

Alternatively, proof of relation (15) can be carried out by Maple without replacing sums 

with closed representations. Figure 9 (a TE component of the problem) shows the proof of (15). 

To this end, one can define two functions: P1(k) – the left-hand side of (15) and P2(k) – the 

right-hand side of (15), and then simplify the difference P1(k) – P2(k) by using symbolic 

computational capability of Maple to show that it is equal to zero. 

 

 

Figure 8. Wolfram Alpha calculates the left-hand side of (16). 
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Figure 9. Maple-based proof of relation (15). 

  

 Finally, due to the relations 

     

 
   

      

 
    

       

 
        

           
 

 
        

 

 

one can conclude that the numbers 21, 2211, 222111, 22221111, ...        
 

       
 

   are triangular 

numbers the ranks of which are, respectively, 6, 66, 666, ...,        
 

. The following TITE 

problem can be formulated: How can one generate computationally triangular numbers the 

ranks of which consist of the digit six only? 

To begin with the TI component of the formulated problem, note that        
 

   

       
 

. Therefore, 11 = 10 + 1, 111 = 100 + 11, 1111 = 1000 + 111 and so on. In 

general,         
 

              
   

. In other words, the recursive formula         

           defines the terms of the sequence           
 

 . 

Alternatively, we have                                       

and, in general,            
 

         . That is, 

    
          

 
   

     

 
   

     

 
    

     

 
 
        

 
    

                

 
 , 

or  

                                                                         = 
                

 
                            (17) 
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Figure 10. Using Wolfram Alpha in generating sequence (17) up to a 60-digit term. 

 

Formula (17) is a closed formula for sequence (1). Figure 10 shows the use of Wolfram 

Alpha in generating sequence (1) through formula (17). Note that Wolfram Alpha has clear 

advantage over a spreadsheet as the former tool is capable of generating integers with a large 

number of digits.   

 

10. Posing new TITE problems 

Consider the sequence  

                              45, 2415, 224115, 22241115, 2222411115, … .                    (18) 

The common term of (18) has the form             
   

4       
   

  – a 2n-digit number, 

where n = 1, 2, 3, …., so that when n = 1 we have           

A TI part of exploring sequence (18) is to develop its closed formula. To this end, one 

can write  
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That is, each term of sequence (18) can be written in the form 

      

 
                    

A TE part of exploring sequence (18) is to use Wolfram Alpha in solving the equation  

    

 
 

      

 
                  . 

The program yields the positive root of this equation,   
       

 
  This indicates that all 

the terms of sequence (17) are triangular numbers of rank  
       

 
. From here, a number of TITE 

problems can be formulated.  

1. Prove the identity 

       

 
  

       

 
     

      

 
                  . 

2. Prove that the sum         is a multiple of 9 for any natural number n. Use different 

methods of proof: a) test of divisibility by 9; b) method of mathematical induction; c) 

technology-based proof. 

3. Show that the sequence    
       

 
 generates the numbers  

                                                    , 6 , 66 , 666 , …,           
   

 , …                     (19) 

where n = 1, 2, 3, … . In other words, prove the identity           
   

9 = 
       

 
 . 

 Note that whereas sequences (18) and (19) do not belong to OEIS
®
, the sum of digits of 

the terms of sequences (18) and (19) are, respectively,  , 12, 15, 1 , … and  , 15, 21, 27, … have 

an interesting relationship: the latter consists of every second term of the former. The same 
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relationship can be observed for the terms of sequence (1) and their ranks. Indeed, the sum of 

digits of sequence (1) are consecutive multiples of three and their ranks are even multiples of 

three. This property, while can be easily explained as the sum of digits of the terms of sequences 

(18) and (19) increases by three and six, respectively, it is not a trivial one: already the sums of 

digits of the terms of sequence (2) are all equal to ten, but the sums of digits of their ranks are all 

equal to one. 

 

11. Conclusion 

This paper introduced teaching ideas born recently in connection with the need to 

develop a coherent problem-solving mathematics curriculum. The coherence of the curriculum 

requires from mathematics educators an ability to balance positive and negative affordances of 

technology in the lieu of modern technological advances capable of reducing problem solving to 

students’ pushing right buttons on a keyboard without conceptual understanding of mathematics 

involved. Towards this end, the concept of a TITE problem was discussed. The discussion 

stemmed from revisiting earlier uses of technology in exploring sequences of numbers that 

represent subsequences of triangular numbers the digits of which follow interesting patterns. In a 

more general context, the concept of a TITE problem-solving curriculum extends the notion of 

Type II application of technology [23] to address the issue of a negative affordance of computers 

when a mathematical problem may be educationally appropriate, yet could be solved through a 

pure computer routine. The didactic idea behind addressing this issue is to use such an easy 

approach to mathematical problem solving as a motivation for developing new, more demanding 

tasks which require both a non-artificial mathematical thinking and computational support. Such 

uses of technology in mathematical problem solving can be referred as its Type II applications of 

the second order.  

At the beginning of the 21
st
 century, reflecting on the use of computers in mathematics 

education, Langtangen and Tveito [21] argued, “Much of the current focus on algebraically 

challenging, lengthy, error-prone paper and pencil work can be significantly reduced. In fact, we 

seriously doubt that there will be space for this type of activity at all in a few decades, at least not 

in the mainstream education. The reason for such an evolution is that the computer is simply 

much better than humans on any theoretically phrased well-defined repetitive operation” (pp. 

811-812). Technology was also suggested as an assistant in doing proof by professional 

mathematicians who would be using technology, as a means “to put the correctness of their 

proofs beyond reasonable doubt” [18, p. 1405]. This perspective on the use of technology is not 

only applicable to students majoring in mathematics. The general mathematics education system 

should take these particular recommendations into account and make appropriate changes in the 

curriculum in order to provide all learners of mathematics with a new type of problems, 

technology immune/technology enabled (TITE) ones, and to suggest pedagogically-sound ways 

of outsourcing symbolic computations to software.  

The idea of using TITE problems in mathematics teacher education can be seen as an 

interaction between their TI and TE components in much the same way as the concept of TPCK 

(technological pedagogical content knowledge) provides teacher candidates with “understanding 

of the interactions of the knowledge of technology and the knowledge of their subject area” [28, 

p. 520]. With this in mind, the importance of conceptual knowledge of mathematical structures 

was emphasized in this paper through the use of numeric sequences the development of which is 

visually obvious but structurally challenging. In order to move from visual recognition to 
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conceptual understanding, one has to learn how to look at a problem through the lenses of the 

TITE concept. Such learning is not an easy task for it requires multiple cognitive skills to come 

into play. Those skills include knowing when technology is an appropriate scaffold in the 

process of entertaining mathematical reasoning and what type of technology has to be used in 

support of which kind of mathematical thinking. In presenting these teaching ideas, several 

learning frameworks have been mentioned and brought together to form a unifying environment 

for the learning of mathematics with computers by secondary teacher candidates. The authors 

believe that mathematics educators working for an EPP (education preparation provider) unit can 

develop many extensions of the activities presented in the paper to be used by the candidates in 

posing and solving new TITE problems. 

 

Acknowledgement. This paper is an extended version of the authors’ Society for 

Information Technology and Teacher Education 2017 conference paper titled “TITE problem 

solving: Integrating computing and proving in secondary mathematics teacher education” and 
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