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Abstract. In order to bring attention to the incoherence of traditional pre-high-school geometry curricula, 

the first two authors have developed a course to provide secondary pre-service mathematics teachers a 

robust understanding of how geometry could be learned. Using the Van Hiele levels as a guiding framework, 

the course uses isometric transformations as tools to generate and then define geometric concepts of the 

important triangles and quadrilaterals. Descriptions of key activities from the course are provided. Initially, 

their second cohort of pre-service teachers did not grasp the purpose of these approaches, fully expecting to 

be doing the same kind of geometry they had experienced in high school. When expected to use this detailed 

knowledge to create their own deductive proofs the point was made. The authors use an identity framework 

to analyze their students’ evolving identities, that changed from compliance for the purpose of passing to 

total immersion in the entire course.  
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1. Introduction 

Texas is one of the many states in the United States that struggles to fill secondary mathematics 

teaching positions each year and schools often fill these positions with teachers who are certified to 

teach in other areas [1] or not certified at all. These shortages are most pronounced in high-needs 

schools, such as those in urban areas like Houston. These schools have difficulty finding and then 

retaining high-quality teachers [4] especially in fields like mathematics. The University of 

Houston–Downtown (UHD) is an urban institution in the middle of downtown Houston and makes 

a priority to prepare students to address the needs of the greater Houston community. Preparing 

teachers who will succeed in urban schools is part of that priority. UHD is a commuter, urban 
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institution with an enrollment of over 14,000 [10] and is a federally recognized Hispanic and 

minority serving institution with a large number of African-American students. In addition, UHD 

has a large non-traditional student population. 

 

The UHD mathematics department, supports an average total of 82 total majors per year. They are 

generally strong as indicated by a 93% course completion rate and that 52% have at least a 3.0 (B) 

grade point average [9] UHD has the potential to make a contribution to the number of well-

qualified high school mathematics teachers in the region. In the fall of 2011, we established the 

University of Houston-Downtown Noyce Mathematics Teacher Scholarship Program to recruit and 

financially support strong undergraduate mathematics majors who were seeking secondary 

mathematics teacher certification. The program was funded by the National Science Foundation 

Noyce Teacher Scholarship grant [6]. Able to provide substantial scholarships to these students, 

hereafter called Noyce scholars, four faculty members (two are authors of this paper), three from 

the mathematics department and one from the education department, have worked closely to 

support student success as undergraduates and later, as beginning high school teachers. Through 

this grant, the education department co-principal investigator, Sack, has used her course release 

funds to co-teach an upper-level semester-long course, Geometry for High School Teachers, with 

PI, Quander, attended by all Noyce scholars as well as other non-Noyce undergraduate students 

majoring or minoring in mathematics. This article describes the rationale for the course, including 

its theoretical underpinnings; the instructors’ expectations and perspectives on student interactions 

during class meetings; and, one activity that appeared to change the dynamics of a recent course 

section during one particular class meeting in interesting ways. The authors used an identity focus 

to frame their perspectives on student identity with respect to learning geometry. 

 

2. Identity framework 

 

We frame our identity construct about normative and personal identity described by Cobb, Gresalfi, 

& Hodge [2]. They denote normative identity as that established in the classroom by the instructor 

and as enacted by the learners in order to be viewed by the instructor as an effective doer of the 

mathematics in that classroom. Learners would have to identify with these expectations. Normative 

identity is a communal rather than individualistic construct. In a learner-centered classroom, the 

instructor provides learners many opportunities to authorize decisions about the interpretation of 

tasks sometimes by carefully guiding an exploration and asking guiding questions to enable 

learners to develop conceptual meanings and understandings. In such classrooms, learners exercise 

“conceptual agency, which involves choosing methods and developing meanings and relations 

between concepts and principles” [2, p. 45]. In contrast, in classrooms in which learners use only 

prescribed, established solution methods, they exercise disciplinary agency. In such classrooms, 

learning authority rests almost entirely with the teacher.  

There is a continuum between conceptual versus disciplinary agency in that teachers may provide 

learners some opportunity to exercise conceptual agency, but also expect their mathematical 

productions to follow traditionally acceptable formats. The authors, as instructors, lean toward 

learner-centered instruction to enhance learners’ conceptual agency with respect to developing 

geometric sense, but also expect them to exercise procedural agency in producing mathematically 

acceptable written arguments, especially in writing geometric proofs.  

Personal identities, on the other hand, concern the extent to which individual students “identify 

with their classroom obligations, merely cooperate with the teacher, or resist in engaging in 

classroom activities”  [2, p. 47].   

 

In the next section, the theoretical backdrop that was used to develop the course trajectory, The Van 

Hiele Model of Geometric Thought [11] is described with its connections to beginning course 

activities. 
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3. Theoretical backdrop for the course 

 

The first author has developed a teaching-learning trajectory for high school geometry instructors 

that has evolved over 14 years, during the 6 years that she served as an instructional coach for high 

school teachers in a large urban school district, then as a mathematics methods instructor and 

researcher for the past 8 years. Since a large number of high school students lack the pre-requisite 

geometric knowledge to be successful in a traditional deductive geometry high school course, the 

trajectory builds this knowledge through carefully developed activities based on the Van Hiele 

Levels [11], prior to deductive proof activities. The author uses the names of the levels as presented 

in Van Hiele’s primary source [11] rather than synonymous names from secondary sources. These 

are briefly described as follows:  

 
Visual Level. Learners use informal language to describe a geometric figure by its appearance. This is 

appropriate for primary grades learners.  

 

Descriptive Level. Learners define figures using formal language and geometric notation. Properties are 

determined by measurement or overlaying (to compare for congruence, for example) resulting in an 

exhaustive list of properties to define a given figure. It is appropriate to begin this type of work 

beginning in intermediate grades (approximately age 9).  

 

Relational Level. Learners use logical language (not symbolic logic) and may be able to follow a simple 

proof but are unable to develop their own proofs. The relational level may be developed at the same 

time as the descriptive level, by comparing two related but different figures’ properties.  

 

Deductive Level. Learners can follow and create formal geometric proofs as expected in high school.  

 

Rigor Level. This is typically post-high school deductive work, e.g. symbolic logic, truth tables.  

 

Van Hiele [11] also proposed a sequence of phases to be followed in any given lesson. These align 

with inquiry-based, learner-centered instruction, beginning with introductory information that sets 

the stage for an investigation; followed by learner-centered exploration, which may be guided by 

the teacher to enhance learners’ conceptual agency with respect to the topic at hand; then, a whole-

class discussion about learners’ findings; then, extended investigation or problem solving related to 

the initial task; and, finally, integration of knowledge generated through the entire lesson cycle. 

This may become the introductory information for the next lesson cycle. 

 

In the United States, there is a strong emphasis on numerical and algebraic reasoning from primary 

grades through high school. A good example of widely adopted mathematics curriculum objectives 

is the Common Core Mathematics curriculum (http://www.corestandards.org/Math/). The geometry 

strand, however, is poorly developed with respect to the Van Hiele [11] levels across the 

elementary and middle grades, with a capstone single year deductive geometry course offered in 

high school. For example, in Kindergarten and 1
st
 Grade, learners correctly name shapes, use 

informal language to describe numbers of vertices or sides (Visual and beginning Descriptive 

levels). In 2
nd

 Grade, they recognize and draw shapes having specified attributes, such as number of 

angles in 2D figures, and to identify triangles, quadrilaterals, pentagons, hexagons and cubes 

(beginning Descriptive level). In 3
rd

 Grade, they recognize that shapes may share attributes (e.g., 

rhombuses, rectangles, squares all have 4 sides), which is a Relational level task with very limited 

development of Descriptive level understanding of quadrilaterals to support this objective. In 4
th

 

Grade, learners draw and identify points, lines, rays, line segments, angles (acute, right, obtuse), 

and perpendicular and parallel lines in 2D figures. In 4
th

 Grade, protractor measurement is 

introduced and mastered. These tasks are more closely aligned to developing Descriptive to 

Relational level understanding of 2D figures that should take place before the hierarchical 

categorization set for 3
rd

 Grade. In 5
th

 Grade, 2D figures are classified in a hierarchy based on 
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properties. This could easily be done within the 4
th

 Grade work if substantial Descriptive level work 

is included in 3
rd

 and 4
th

 Grades. In 6
th

 Grade, there are no objectives relating geometric shapes. 

Only in 7
th

 Grade learners draw, construct (using given angle or side measurements) and describe 

geometric figures and the relationships among them along with facts about supplementary, 

complementary, vertical and adjacent angles and algebraic opportunities to solve simple equations 

about angles in figures. In 8
th

 Grade, by experimentation, they verify properties of isometric 

transformations, presumably in the coordinate plane, and also prove and apply the Pythagorean 

Theorem, which is a Deductive level concept that should be developed in the high school Geometry 

course. Unfortunately, most often, this theorem is introduced as an abstract formula that applies to 

right triangles with given measurements, totally devoid of conceptual development.  

 

4. The Geometry for High School Teachers Course 

 

The authors believe that teachers will use instructional resources appropriately only if they have 

experienced them as learners. Therefore, their learners are introduced to appropriate pre-high-

school activities at the onset of this course, to be adequately prepared to address the conceptual 

gaps described above. It begins with a series of activities to develop intuitive Visual to Relational 

Levels understanding of isometric transformations, which are then used as tools to exhaustively 

develop the properties of parallel lines, triangles and quadrilaterals that should have been carefully 

developed in pre-high school mathematics classes. 

  

4.1 ISOMETRIC TRANSFORMATIONS  

 

Many of the activities utilize patty paper, which is inexpensive wax-free, transparent parchment 

paper procured through catering outlets. If unable to obtain the patty paper in 6-inch (approximately 

15 cm) squares, then larger sheets can be cut to this size. It is not necessary that these be perfect 

squares. Under the instructor’s direction, learners use the patty paper to construct all of the figures 

themselves using the properties they develop about isometric transformations. In the first activity, 

they fold the paper in half, draw an asymmetric figure on one side of the fold (the pre-image), and 

trace the figure on the other side (the image), forming a reflection, or mirror image. This is a Visual 

Level construction. Each learner uses his or her own figure to make generalizations that follow. 

Next, each learner draws the line segments connecting three or four corresponding points from the 

pre-image to the image across the fold, which is the line of reflection. Now, they describe the 

reflection in terms of these line segments in relation to the line of reflection, which brings their 

understanding to the Descriptive Level with respect to the concept of reflection (see Fig. 1). Even 

though learners started with very different self-constructed figures, the Descriptive Level structure 

and properties are the same for all. 

 

 

Figure 1. Reflection from Visual Level to Descriptive Level 

For the next activity (see Fig. 2), learners create two parallel fold lines, about 2 inches (5 cm) apart, 

draw an asymmetric figure (pre-image) on one side of the parallel fold lines, reflect it by folding 
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and tracing into the middle section (image-1), and finally reflecting image-1 across the second fold 

by tracing into the third section (image-2). As before, they draw line segments connecting at least 

three points on the pre-image through their corresponding points on image-1 to those on image-2. 

Using the knowledge of properties of reflection derived from the first activity, the properties of 

translation are developed. Thus, Descriptive Level information about translations emerge from 

Relational Level thinking using their prior knowledge of reflection. 

 

 

Figure 2. Translation from Descriptive to Relational Level 

 

A third activity involves reflection across two intersecting lines of reflection, using perpendicular 

folds (to generate a half-turn, 180-degree rotation or point-reflection); and, also across two fold 

lines that intersect in any random angle to generate a rotation of the pre-image through two times 

the angle formed by the folds about the intersection point generated by the two fold lines (see Fig. 

3).  

 

Figure 3. Rotation integrating Descriptive and Relational Level 

In this course, Relational Level understanding of isomeric transformations underscores the 

development of Descriptive Level and Relational Level understanding of triangles, parallel line 

properties and the special quadrilaterals. Of note: The Relational Level with respect to the isometric 

transformations, as experienced above, is often introduced only within the last quarter of traditional 

high school text books, but can easily be done with children in 4
th

 Grade concurrently with angle 

measurement. 
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4.2 WHAT MAKES A TRIANGLE?  

 

Many learners who are still at the Visual Level across many geometric concepts believe that any set 

of three side measurements can create a triangle. For the first triangle activity, each learner draws 

three randomly selected cards from a packet with cards numbered from 3 to 30 and then uses only a 

ruler to construct a triangle using a self-selected unit of measurement for all three sides. Note that 

compass constructions will be introduced later in the course when a Relational Level understanding 

of rhombus and kite properties are in place. The instructor writes the headings a ≤ b ≤ c and 

Triangle? Yes/No on the board. Learners list their three numbers in increasing order underneath a, 

b, and c, and Y if they were able to construct a triangle; N if they were unable to construct a 

triangle. This activity leads to the triangle inequality postulates: The sum of the lengths of any two 

sides of a triangle is always greater than the length of the third side, and, The smallest angle is 

opposite the shortest side; the largest angle is opposite the longest side. Again, through the process 

of constructing these figures based on the three selected random numbers, all learners wrestled with 

the task and were all able to make sense of which sets could form a triangle.  

 

Learners now draw small acute or obtuse scalene triangle on an index card. Using three different 

colored pencils the sides and angles are marked to clearly distinguish them. They cut out the 

triangle, and then tessellate it on a sheet of plain paper by tracing the triangle and keeping the 

colored markings visible at all times. The only rule is to completely match congruent sides of the 

traced triangles; no gaps or overlaps allowed. This process, using rotation produces all of the angle 

properties related to intersecting lines, parallel lines and transversals, and that the sum of the three 

angles in a triangle is always 180
o
. 

 

 

Figure 4. Triangle tessellation with associated angle properties 

In the next activity, each learner constructs an equilateral triangle on patty paper, having drawn one 

side, approximately 4 inches (10 cm) in length, near one of the edges of the paper. The instructor 

encourages learners to try various ways to construct the figure, so that when an efficient method is 

presented it will be understood. Inevitably, some of the learners will notice that the third vertex 

point must lie immediately above the midpoint of the drawn line (i.e., on its perpendicular bisector. 

This is constructed by folding the patty paper so that the two endpoints of the drawn line coincide. 

Now the drawn line can be folded through one of its endpoints so that the other endpoint coincides 

with the perpendicular bisector fold line. All the properties of an equilateral triangle are now visible 

and an exhaustive list of properties is listed (see Fig. 5). 
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Figure 5. Equilateral triangle and properties 

Additional triangle construction activities ensue. These include development of properties of acute, 

right and obtuse isosceles triangles, and, the four points of concurrency, namely the circumcenter, 

incenter, centroid and orthocenter; and, the Euler Line, which passes through the circumcenter, 

centroid and orthocenter. These activities are developed using patty paper and properties of 

reflection. For the activity to construct isosceles acute, obtuse and right triangles first draw three 

congruent circles on three sheets of patty paper. If compasses are not handy or learners struggle to 

use compasses, any circular object with a 2-3 inch diameter can be traced. The centers of these 

circles can be found by folding the circle into two semi-circles and pinching the approximate center 

of the diameter – and then repeated along a different fold so that the pinched folds intersect in the 

center of the circle. The isosceles triangle properties can be constructed using two radii on any size 

circle to form their legs. For our activity, the three different isosceles triangles are constructed on 

congruent circles, and then properties relating to central angles and chord lengths can also be 

determined. Details are available on the course website [8]. 

 

Van Hiele [11] had emphasized first examining figures with the most symmetries in a given set. For 

example, the equilateral triangle has 3 lines of symmetry (see Figure 5) and will therefore display 

more properties (Descriptive Level) than the non-equilateral isosceles triangles, which have only 1 

line of symmetry. Learners can develop properties for any other triangle by considering which 

properties of the equilateral triangle apply to these triangles (Relational Level).  

 

4.3 QUADRILATERALS 

 

When moving to quadrilaterals, the course also begins with the most symmetrical, i.e., the square. 

Each learner constructs a square as follows. First, fold a sheet of (square-shaped) patty paper into 

two sections, then fold a perpendicular fold that will divide the paper into four quadrants. In one 

quadrant, an isosceles right triangle is drawn, using the perpendicular fold lines to place the right 

angle. The first leg, along one of the folds can be matched by folding to accurately place the 

endpoint of the congruent second leg. The properties of this triangle are marked clearly, using 

conventional symbols such as angle measures and matching tick marks for the congruent segments. 

This triangle is then reflected across one of its legs; and then the entire figure is reflected across the 

line containing the other leg (see Fig. 6). The figure is seen to be a square, since it has 4 right 

angles and 4 congruent sides. Now all of the properties of a square can be determined in terms of its 

sides, vertex angles, diagonals and symmetry. Some of these are listed in Figure 5, and it is possible 

to expand the list to over 30 properties.  
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Figure 6. Properties of a square 

Again, even though this activity is teacher-directed, each learner has constructed his or her own 

square on patty paper using properties of reflection. These properties then allow learners to 

determine the properties of the figure exhaustively (Descriptive Level). In following constructions, 

using reflection or rotation, each figure’s properties are determined by comparison with those of the 

square. 

 

Figure 7 shows the patty-paper constructions of a rhombus (by reflecting a scalene right triangle 

across the lines containing its legs, like the square’s construction); a rectangle (by rotating a right 

scalene triangle about its hypotenuse (half-turn or 180
O
 rotation); a parallelogram (by rotating a 

scalene acute or obtuse triangle about one of its sides); and a kite (by reflecting a scalene triangle 

across one of its sides – but, in the case of a right triangle, reflecting across its hypotenuse). All of 

the above activities were designed to explicate the properties (through Descriptive and Relational 

Level) of the important 2-D figures that high school learners use in Deductive Level proof 

activities. Unfortunately, the pre-high school geometry curriculum does not move coherently to 

build robust Relational Level knowledge of these figures, that is the cornerstone for success at the 

Deductive Level. Some additional activities engage learners in deeper Relational Level 

understanding among the different triangles and quadrilaterals that they now understand in 

exhaustive detail. 

 

 

Figure 7. Rhombus, Rectangle, Parallelogram and Kite 
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4.4 DEDUCTIVE PROOFS 

 

The next section of work moves learners into Deductive Level proof activities. It begins with an 

understanding of the Euclidean postulates for triangle congruence, namely, which three 

corresponding congruent parts of two triangles make the triangles congruent? Consider all 

combinations: side – side – side; side – included angle – side; angle – included side – angle; and, 

angle – angle – non-included side. The quadrilaterals are then defined using conventional 

conditional statements, such as, If a quadrilateral is a rhombus then it has four congruent sides. 

Using these definitions, prove that the properties previously developed in the 

Descriptive/Relational Level activities, are true using triangle congruence. These proofs are typical 

of those found in traditional high school texts. 

 

5. Classroom dynamics 

 

Students who major or minor in mathematics select this Geometry for High School Teachers course 

because they have a genuine interest in becoming secondary mathematics teachers or because they 

need an upper-level mathematics elective course for their particular degree plans. Therefore, none 

of them would resist engaging in classroom activities since their grades depended on their 

successful classroom participation and the quality of their application of this knowledge in course 

exams. From a personal identity perspective, they would at least cooperate and complete required 

assignments even if they did not engage with them meaningfully. The instructors had co-taught this 

course once before, three semesters prior to the current experience. Their first class of 20-25 

students eagerly participated in all activities from the onset, displaying strong personal identity 

relations with the way their geometric understanding evolved. As a result, several who had not 

committed to becoming teachers at the beginning of that semester enrolled in the university’s 

secondary education program, increasing the number of Noyce scholars from approximately 2 per 

semester at the same stage of their program to 12, in that particular semester. A very strong 

majority of students in that particular cohort had engaged in all course activities very 

enthusiastically and never missed a class. As a result, the few who were merely complying with 

course expectations did not voice or demonstrate their perspectives vocally but did have more 

erratic attendance patterns.  

 

We expected this second cohort of 20-25 students to be much like the first. However, most of them 

began to show the same erratic attendance as the small minority had in the first course section. 

They still complied and completed course assignments, being careful to send these to us if they 

knew they would be absent. Furthermore, there was a distinct lack of enthusiasm for responding to 

our expectation that they would share their thinking about the geometric concepts emerging from 

their personal construction experiences. Only 2 or 3 students consistently engaged in vocalizing 

their ideas. We frequently asked them to work in pairs to develop ideas about properties of figures 

they had individually constructed before whole-class discussion took place. Each pair then shared 

one, or occasionally, two ideas in order to comply with our normed expectations of participation in 

concept development, but without the energy and excitement we had enjoyed with the first group. 

When we recorded their ideas on the board, we also noted that many students in this class would 

move to the front to take pictures with their smart phones. Therefore, they clearly demonstrated 

their intent to cooperate and obtain the information they would need to pass the class, but they did 

not identify strongly with the learner-centered conceptual agency the instructors had hoped for.  

 

Then, a remarkable change in classroom engagement and focus occurred as we moved to using the 

triangle congruence properties to perform Deductive Level proofs. Having a list of the properties 

that traditionally define each quadrilateral (e.g., If a quadrilateral has four right angles then it is a 

rectangle), in pairs, they were to select no more than two properties (not the traditional defining 

properties) from a given quadrilateral and try to prove that the defining properties were true. It was 
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at this particular juncture in the course that both instructors noticed a radical change in learner 

engagement, which led them to look at their own and their learners’ identities with respect to 

learning and teaching high school geometry. 

 

As the class began to work on this activity, the two instructors moved about the room, quietly 

working with each pair of students on their selected problem. They noticed a dramatic change in the 

whole class’ level of participation. It had changed from low energy compliance to an enthusiastic 

buzz. For example, one particular pair of students decided to focus on rectangles. They wanted to 

begin with congruent diagonals and believed that this would be sufficient to justify the figure to be 

a rectangle. The instructor working with them suggested they try to draw counter-examples, 

thinking that if they were not able to do so and this property was convincingly sufficient, then the 

next step would be to set up the steps to the formal proof. They were very uneasy with this request, 

and so the instructor sketched a figure with congruent diagonals that intersected at non-equivalent 

points along each diagonal, and deliberately not perpendicular to each other. They immediately 

realized they would need another property that would force the figure to be a rectangle, and eagerly 

referenced the exhaustive, Descriptive Level list of properties the class had generated for this 

figure. They selected, congruent diagonals that bisect each other, and worked out the proof. They 

were so enthusiastic about their success that, after having their work checked, they immediately set 

about selecting a different pair of properties to sufficiently define a rectangle. 

   

Cobb, Gresalfi, and Hodge (2009) describe the process of personal identification to include turning 

from “obligations-to-others” into “obligations-to-oneself” (p. 47). We realized that this activity had 

set up conditions for this to occur. The following week, we asked our students to anonymously 

respond to an activity that would help them and ourselves make sense of their identity awareness 

with respect to learning and teaching geometry. We provided a list of items along with the option of 

responding on a Cluster Write (Rico 2000) to guide and elaborate on their thinking (see Table 1). 

They were provided the list of items but did not necessarily respond to these in any order or place 

on the cluster-write sheet. Students wrote comments on a page with “Geometry for High School 

Teachers” circled in the middle of the page. See Fig. 8 for an example cluster write from this class. 

 

 

Figure 8. Example cluster write 
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6. Results 

 

The three authors, including a third researcher who was uninvolved in teaching the course but who 

has a strong background in identity research, independently identified themes emerging from the 

cluster writes during the analysis of the data. The set of items and selected responses are listed in 

Table 1.  

 

1. Why did you choose to take this class? 

[Most responded that it was on their degree plans.] 

2. What were your expectations for this class when you first started? 

a. To love geometry because I honestly hate this subject. 

b. Expected it to be rigorous and boring. 

c. I thought it would be easier – algebraic geometry. 

d. I hoped to pass this course. 

e. I expected to review high school material. 

f. When enrolled, I thought, “oh great, geometry” – sarcastically 

g. Excited about taking it (yep, still am). Material would just be review: Review, yes, but it had 

more added. 

h. My expectations were to simply return all the stuff they taught me in high school geometry. 

3. How did the class line up with your expectations in the first few weeks? 

a. I got a chance to have my mind refilled with this knowledge and I still learned new things about 

old topics. 

b. (from “expected it to be rigorous and boring”): Nothing at all what I expected. 

c. So far so good, I knew it would be different and it has been. 

d. Pretty right on. My only concerns have been: will what we are learning here line up with what my 

future school is doing. How they are teaching things? 

e. I was confused but now everything is coming together. 

f. We learned a different and better style than what I was taught in jr. high. 

g. First couple of weeks – very confused. 

h. I expected to review high school material – first few weeks OK, learned basics, but then a lot 

more was added– so it kinda threw me off b/c a different approach was taken. 

4. What has or has not worked well for you in this class? 

a. My grade – somehow I feel I understand the material but my grade says otherwise. Knowledge-

wise I’m happy. 

b. Love the patty paper. Hate proof. 

c. Performing exercises with patty paper helps my understanding but as soon as we went to proofs it 

was a shockwave of confusion. 

d. Has given me different approaches to teach the subject areas. 

e. Talking about what I do or do not understand. 

f. It takes me out of my comfort zone. 

g. Where are the grids? (possible reference to “algebraic geometry.”) 

h. Patty paper exercises – The best for this course! – definitely recommend. 

i. Now, I’m like “Oh great, GEOMETRY!” 

j. Definitely happy taking this course 

k. I’ve really enjoyed this class. The way the information flows and builds on itself was very helpful 

in understanding the concepts.  

l. It was not as boring as I thought it would be. I learned more than just geometry, but also how to 

teach it in a way that is more sensible and fun. 

5. Share your thoughts about last week’s proof experiences (selecting two properties to sufficiently 

define the quadrilateral through deductive proof). 

a. It was fun and great to see how different aspects can work together and prove the activities. It also 

helped me connect the dots with what we have been working with. 

b. I still struggle with proofs but the more exposure the more I understanding. I enjoyed and was 

surprised on how many ways it could be proven. 

c. It is fun because it helps us think where things (formulas / definitions) come from. What we 



IMVI OMEN, 8(1)(2018)                                                                                                               J. Sack, J. Quander and L. Mitchell 

 

 

 

 

12 
 

thought we knew finally makes sense. 

d. That was very good and helped a lot. 

e. The last class intrigued me because it made us think outside of the box that what we were used to. 

It was another way to prove things we already knew using a less direct path. It put things in a 

different perspective. 

f. Proofs helped put the properties together.  

g. Happy! Wonderful! Finally I have learned some rules about geometry. 

h. I learned to look beyond the box. 

i. The proofs scared me – I had no sense of how to start the proof. Later, I understood more than 

before but I don’t know if it’s too late. 

j. The proof topic has been one of the only enjoyable classes. 

k. Last week’s proof experience was incredible insightful. I felt that I learned more about doing 

proofs than I have in all my math classes doing proofs. Knowing already about the quadrilaterals 

really helps to do the proofs. 

 

Table 1. Cluster Write Items and Typical Responses 

Note: Even though 18 students participated and all 18 sets of responses were analyzed, the authors 

culled responses down to those that directly responded to each given prompt. They noted a number 

of responses to be irrelevant to given prompts. 

 

7. Discussion 

 

Item 2 intended to bring forth some sense of students’ incoming identities with respect to learning 

and teaching geometry. Responses a, b, c, e, g, h indicate that students expected the course to be a 

repeat of high school geometry, but five of the six displayed a negative perspective. Only responses 

g and possibly h reflect positive identity with respect to the subject. One student expected the 

course to be “algebraic geometry,” a term used to describe those high school geometry courses that 

reinforce algebraic skills throughout, for example, representing the figures on the xy-coordinate 

plane; focusing on slopes and segment lengths using the distance formula to elucidate properties of 

figures; performing transformations across the axes or about the origin; and, finding the values of 

angles in which algebraic expressions are used with respect to the angle properties in various 

figures. 

 

Item 3 indicates that that initial expectations were for the course to be a repeat of high school 

geometry, correlating with a personal identity of cooperating with instructors to make an easy 

passing grade on material that was familiar. Six commented that they were learning new things, that 

two found to be confusing in the beginning but then began to make sense. Generally, they liked the 

different conceptually-based instructional approaches indicating a shift toward an identity that 

aligned more closely with the instructors’ expectations. Response d reflects a strong alignment with 

the instructors’ conceptual agency but concern about how they will be expected to teach in their 

future classrooms, likely to have a strong disciplinary agency as dictated by the curriculum and 

their future school district expectations. 

 

Item 4 asks for specific positive and negative aspects of the class. Only two comments (f, g) 

indicate personal identities relating strongly to doing what is needed to pass the class. The other ten 

comments were all very positive and align with strong conceptual agency identity. These ten 

responses all show personal preference for the style of teaching and content that made the course 

relevant and exciting. Only one, f, indicated a desire to rehash the “algebraic geometry” so 

prevalent in high school geometry courses in the United States. Responses c, d, and l indicate 

learners’ perspectives on the different ways that geometry can be taught. 

Item 5 asked students to focus on the particular activity that the instructors noted to have moved 

students’ personal identities toward more conceptual, instructor-aligned perspectives. All eleven 
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comments were positive and indicated that their identities had now completely aligned with 

instructors’ intentions. No negative comments about this item were noted. Only one, i, shared 

personal concern about constructing proofs. Another, k, stated that the prior experiences in 

developing detailed knowledge about the different figures helped to do the proofs. 

  

8. Conclusions 

 

The instructors’ overarching goal was to provide future high school mathematics teachers a 

perspective on learning and teaching geometry that prepares learners for Deductive Level proof 

work rather than the watered-down “fill in the blank” pre-prepared proofs and coordinate grid, 

“algebraic geometry” work so prevalent in high school texts across the United States. Item 2, 

response c, and item 4, response g, referring to “algebraic geometry” shows the typical high school 

perspective of using geometric figures on the coordinate plane to prepare learners for Pre-Calculus 

and Calculus where transformation of functions on the coordinate plane is important.   

Considering that these students are majoring or minoring in mathematics one can reasonably expect 

that they enjoy doing mathematics. That the majority of them indicated an initial dislike for 

geometry, or the sense that they would find the course easy – as a repeat of high school geometry – 

indicates that we need to take a careful look at the K-8 and high school geometry curriculum in the 

United States. All responses in item 5 showed a change in our students’ perspectives about teaching 

and learning geometry, and about the importance of the activities that established detailed 

knowledge of the figures they would encounter in appropriate deductive work. 
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