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possible to recognize patterns associated with the largest root.  
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1. Introduction 
 
 This note has five major goals – mathematical, educational, and epistemological –listed as an 
introduction to this note. The first goal is to show how proceeding just from the well-known Pascal’s 
triangle, an open mathematical problem formulated in very simple terms and motivated by computations 
only can be presented in the context of mathematics education. The second goal is to suggest that the 
notion of experimental mathematics [6] can be extended from the domain of research to the domain of 
didactics. The third goal is to highlight one of the most profound notions of mathematics epistemology 
that allows for a number of fundamental concepts of mathematics to become connected in a problem-
solving setting. The fourth goal is to show how modern and classic mathematical ideas can be brought to 
bear when computational experiment is utilized as a signature pedagogy of mathematics. The fifth goal is 
to share ideas about using commonly available technology tools in the context of a capstone secondary 
mathematics education course to demonstrate to prospective teachers “how questions arising in high 
school can lead to the frontiers of current research” [9, p. 64]. 
 

2. From Pascal’s triangle to Fibonacci-like polynomials 
 

 Consider one of the most famous mathematical structures, Pascal’s triangle (Figure 1). According 
to Kline [12], Pascal came across his triangle through recording sample spaces of experiments of tossing n 
coins for different values of n. Using the letters H (head) and T (tail) to denote two possible outcomes 
resulted from tossing a coin, the following special cases can be recorded. When   n =1, the sample space 
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  W1 ={H ,T} can be associated with the string  (1,1) meaning that the set  W1 comprises one outcome with 

one head and one outcome with no head. When   n = 2 , the sample space   W2 ={HH , HT ,TH ,TT} can be 

associated with the string  (1, 2,1)  meaning that the set  W2 comprises one outcome with two heads, two 
outcomes with one head, and one outcome with no heads. When   n = 3 , the sample space 

  W3 = {HHH , HHT , HTH ,THH , HTT ,THT ,TTH ,TTT}  can be associated with the string  (1, 3, 3,1)
meaning that the set  W3comprises one outcome with three heads, three outcomes with two heads, three 
outcomes with one head, and one outcome with no heads. One can see that, indeed, the above three strings 
of numbers are, respectively, the second, third, and fourth rows of Pascal’s triangle. 
 

 
Figure 1. Pascal’s triangle. 

 
 The entries of Pascal’s triangle can be rearranged to turn the so-called shallow diagonals (pointed 
at by the arrows in Figure 1) into the rows of a new triangular-like array of numbers shown in Figure 2. 
Alternatively, this array can be developed from the first column by computing partial sums of units (to get 
the sequence of natural numbers in the second column), then by computing partial sums of natural 
numbers (to get the sequence of triangular numbers in the third column), then by computing partial sums 
of triangular numbers (to get tetrahedral numbers in the fourth column), then by computing partial sums of 
tetrahedral numbers in the fifth column (to get pentatope numbers in the sixth column), and so on. 
 It is well known that the sums of numbers in each row of the triangular-like array of Figure 2 are 
consecutive Fibonacci numbers. What was not known until recently [1-3] is that if one uses these strings 
of numbers as coefficients of polynomials by the powers of x so that the far-right number in each row is 
the coefficient in   x0  followed by the coefficient in   x1  and so on, the sequence of polynomials called 
Fibonacci-like polynomials [3] 

  

P0(x) = 1, P1(x) = x +1, P2(x) = x + 2, P3(x) = x2 + 3x +1, P4(x) = x2 + 4x + 3,

P5(x) = x3 +5x2 + 6x +1, P6(x) = x3 + 6x2 +10x + 4, . . .
  

each of which does not have complex roots, whatever the power of a polynomial is, can be developed.  
Note that   P2(x) = P1(x)+ P0(x) ,   P3(x) = xP2(x)+ P1(x) ,   P4(x) = P3(x)+ P2(x) ,

  P5(x) = xP4(x)+ P3(x) ,  P6(x) = P5(x)+ P4(x), and, in general, 

                         Pn(x) = xmod( n,2)Pn-1(x)+ Pn-2(x), P0(x) = 1, P1(x) = x +1                     (1) 
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where   mod(n,2) is the remainder of n divided by 2. The remarkable property of a Fibonacci-like 

polynomial   Pn(x)  to have exactly n real roots was established by the authors computationally for 

  n £100  and, as of the time of writing this note, it remains a technology-motivated conjecture. 
 

 
Figure 2. Pascal-like triangle as a generator of Fibonacci-like polynomials. 

 
 Consider now the recursion equation 

                                                            
gk+1 = a +

b
gk

, g1 = 1                 (2) 

where a and b are real parameters,   a2 + 4b < 0 . The significance of equation (2) is in its connection to the 
famous difference equation associated with Fibonacci numbers and the Golden Ratio. Indeed, setting 

  
gk =

fk+1

fk

,   f1 = f2 = 1 , it follows from (2) that   fk+2 = afk+1 + bfk  and when   a = b = 1  the celebrated 

numbers 1, 1, 2, 3, 5, 8, ... and the Golden Ratio, 
  
lim
k®¥

fk+1

fk

=
1+ 5

2
, result. When   a2 + 4b < 0 , although 

  
lim
k®¥

gk does not exist, it may reemerge in the form of a string of numbers (a cycle) the length of which 

depends on a specific relationship between a and b that, in turn, is determined by the roots of the 
polynomials   Pn(x) . For example, when   a = 2  and   b = -4  it follows from (2) that   g1 = 1,  g2 = -2 , 

  g3 = 4  and, once again,   g4 = 1. At the same time, 
  
a2

b
=

22

-4
= -1 and   P1(-1) = 0 .      

 This note is a continuation of an earlier work by the authors [1, 2] in which it was demonstrated 
how the joint use of an electronic spreadsheet, Maple [7], and computer application The Graphing 
Calculator (GC) developed by Pacific Tech [4] enabled the discovery of cycles of integer periods formed 
by the solutions of equation (2). In what follows, the authors will demonstrate that further use of 
technology, including Maple, the GC, and (available free on-line) computational engine Wolfram Alpha, 
makes it possible to uncover several intriguing patterns in the very behavior of the cycles.  

 
3. Parabolas as carriers of parameters yielding cycles 

 
 We say that the iterations  gk  generated by equation (2) form a cycle of period p if 

 gk+ p = gk "k ÎN , where  N  is the set of natural numbers. For example, when   p = 3 it follows from 
(2) that 
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gk+3 = a + b
gk+2

= a + b

a + b
gk+1

= a + b

a + b

a + b
gk

 

or, setting   gk+3 = gk = z ,  

 

z = a + b

a + b

a + b
z

. The last equality is equivalent to 
  
z = a + abz + b2

(a2 + b)z + ab
 

whence  

  (a2 + b)z2 + abz = a(a2 + b)z + a2b+ abz + b2  
or  

  (a2 + b)(z2 - az - b) = 0. 

Because the assumption   a2 + 4b < 0  implies   z
2 - az - b ¹ 0 , the equation  

                                                                          a2 + b = 0       (3) 
serves as a condition that   gk+3 = gk "k ÎN . Furthermore, (3) implies   a2 + 4b < 0; that is, in the plane 

  (a,b)  the parabola   a2 + b = 0  resides inside the parabola   a2 + 4b = 0  and is a carrier of parameters that 
yield 3-cycles. 

 In turn, dividing both sides of (3) by b and setting 
  
x = a2

b
 we have   P1(x) = x +1= 0 ; that is, on 

the number line, the root of the polynomial   P1(x)  is responsible for the formation of a cycle of period 

three in equation (2). In much the same way, it can be shown that whereas   P2(x) = x + 2 , the equation 

 

z = a + b

a + b

a + b

a + b
z

  (in which   z = gk+4 = gk ) is equivalent to   (a2 + 2b)(z2 - az - b) = 0  or 

  a2 + 2b = 0  whence   P2(x) = x + 2 =0 where 
  
x = a2

b
. That is, the root of the polynomial   P2 (x)  is 

responsible for the formation of a cycle of period four in equation (2). Alternatively, the parabola 

  a2 + 2b = 0  resides inside the parabola   a2 + 4b = 0  and is a carrier of parameters that yield 4-cycles. In 
general, on the number line, a root of the Fibonacci-like polynomial   Pn(x)  is responsible for the 

formation of a cycle of period n + 2 in equation (2) and in the plane (a, b) there exist   n 2éê ùú  parabolas 

(where  xéê ùú  is the smallest integer greater than or equal to x) each of which is a carrier of parameters that 
yield those cycles. 
 Another interesting property of Fibonacci-like polynomials is that all their roots are real numbers 
and belong to the interval (-4, 0). While the latter part of this property (being equivalent to the fact that if 

  Pn(x*) = 0 , then the parabola   a2 - x*b = 0  resides inside the parabola   a2 + 4b = 0 ) can be proved 
without much difficulty for all   n = 0,1,2,..., the former part, as mentioned elsewhere [1], can only be 
confirmed computationally for sufficiently large values of n by using, for example, Maple. Put another 
way, the statement that Fibonacci-like polynomials   Pn(x)  defined through relations (1) don’t have 

complex roots (alternatively, there exist   n 2éê ùú  parabolas, all residing within the parabola   a2 + 4b = 0 , 
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each of which is a carrier of parameters that yield cycles of period n + 2) remains a computer-motivated 
conjecture. As Borwein put it, “there is no particular reason to think that all elegant true conjectures have 
accessible proofs” [5, p. 102]. 
 The smallest root of a Fibonacci-like polynomial can be singled out for its unique influence on the 
behavior of cycles of any integer length generated by equation (2). When   mod( p,2) ¹ 0 , a different 
behavioral pattern of p-cycles associated with the largest root of a Fibonacci-like polynomial can be 
observed. The cycles, by representing a string of numbers, can be referred to as generalized golden ratios 
with the parabolas as their carriers. In what follows, the patterns exhibited by these ratios will be 
formulated in combinatorial terms and represented visually through circular diagrams. The role of 
technology in developing this apparently new knowledge about the generalized golden ratios will be 
critical. Indeed, several properties of the roots of Fibonacci-like polynomials utilized below will result 
from computing the effectiveness of which, however, requires intuition. 

 
4. Permutations with rises and directions of cycles 

 
 Let 

  
x̂ p, s Î(-4, 0)  be the smallest root of the Fibonacci-like polynomial 

  
Pp-2(x) . Setting 

  
b = a2

x̂p, s

 in equation (2) yields  

                                                                    
gk+1 = a + a2

x̂p, s ×gk

           (4) 

thus making the orbits  gk  dependent on a single parameter. Furthermore, the inclusion 
  
x̂p , s Î(-4,0)  

implies   b < 0  whence   a2 + 4b < 0; conversely, the last inequality implies the inclusion 
  
a2

b
Î(-4,0) . As 

  
Pp-2 (x̂ p, s ) = 0 , a cycle of period p realizes on the parabola 

  
b = a2

x̂p , s

. 

 Consider the set  

                                                             
{g1(a),g2(a), g3(a),..., g p(a)}          (5) 

 
which represents a cycle of integer period p formed by the solutions of equation (4) where 

  
g1(a) = g p+1(a) =1. In the experimental mathematics fashion [6], the use of technology can motivate the 
following question: Is there any relationship among the elements of the above set that remains invariant as 
p changes?  
 In answering this question, the concept of permutation with rises [8] comes into play. It is said 
that the permutation   [r(1),r(2),r(3),...,r( p)]  has exactly n rises on the set 

 
Z p if there exist exactly n – 1 

values of i such that   r(i) < r(i +1) . For example, the permutations [1, 2, 3, 4, 5] and [1, 2, 3, 5, 4] have, 

respectively, five and four rises on  Z5 . Indeed, in the former permutation  1< 2 < 3< 4 < 5—a chain with 
four “<” signs and in the latter permutation  1< 2 < 3< 5 > 4—a chain with three “<” signs.  
 We will say that the permutation   [r(1),r(2),r(3),...,r( p)]  determines the direction of cycle (5) 
on a certain interval  I if for all aÎI  the inequalities 

  
gr (1)(a) > gr (2)(a) > gr (3)(a) > ...> gr ( p) (a)  

hold true. A computational experiment based on the use of the GC will result in the discovery of a pattern 
in the directions of a cycle on the number line that is invariant across the cycles of different lengths 
(periods). It will be shown that such a pattern can be formulated in terms of permutations with rises and is 
associated with the smallest root of a Fibonacci-like polynomial only. The case of the largest root will be 
considered separately. 
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5. Recognizing the nature of permutations of the elements of a three-cycle 

 
 Consider the polynomial   P1(x) = x +1 for which   P1(-1) = 0  and thus 

  
x̂3, s = -1. One can see 

that on the parabola   b = -a2  the three-cycle of the form  

                                              
{g1(a), g2(a),g3(a)}={1,a - a2 , a2

a -1
}                         (6) 

realizes. Indeed, 
  
g1 =1,g2 = a + b

g1

= a - a2 , g3 = a + b
g2

= a - a2

a - a2 =
a2

a -1
 and  

  
g4 = a + b

g3

= a - a2 ¸
a2

a -1
=1 . Furthermore, as shown in Figure 3, when a < 0 the inequalities 

  
1> a2

a -1
> a - a2  hold. The graphic demonstration can be confirmed analytically by reducing each 

inequality to an equivalent (true) inequality,   a2 - a +1> 0 , as follows: 

  
1> a2

a -1
Û a -1< a2 Û a2 - a +1> 0  and 

  
a

a -1
<1- a Û a > (1- a)(a -1) Û a > 2a - a2 -1Û a2 - a +1> 0 . 

That is,   g1(a) > g3(a) > g2(a) . This implies that the permutation [1, 3, 2] determines the direction of 
cycle (6) on  (-¥,0) . The graphs also show that the permutation [1, 2, 3] determines the direction of cycle 

(6) on  (0,1) ; that is, 
  
1> a - a2 >

a2

a -1
. Indeed,   1> a - a2 Û a2 - a +1> 0  and 

  
  
a - a2 >

a2

a -1
Û1- a > a

a -1
Û (1- a)(a -1) < a Û  a2 - a +1> 0 . Likewise, the permutation [3, 1, 

2] determines the direction of cycle (6) on  (1,¥) , that is,  

  
a2

a-1
>1> a - a2 . One can note that the permutations  [1, 3, 2], [1, 2, 3]  and  [3,1, 2]  have two, three, and 

two rises, respectively. Furthermore, the 3-cycle changes its direction twice. Finally, the three 
permutations can be represented through a circular diagram (Figure 4). The significance of this 
representation will be revealed later as we consider strings of oscillating golden ratios of higher lengths. 

 

 
Figure 3. Graphs of the elements of cycle (6). 
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Figure 4.  Circular diagram for cycle (6). 

 
6. Permutations of the elements of a four-cycle 

 
 Consider the polynomial   P2 (x) . According to definition (1),  

  P2(x) = xmod(2,2)P1(x)+ P0(x) = x +1+1= x + 2  whence   P2(-2) = 0 . Consequently, on the parabola 

  
b = - a2

2
 a cycle of period four realizes. This cycle,  

                           
{g1(a),g2(a),g3(a),g4(a)}={1, a(2- a)

2
, a(a -1)

a - 2
, a2

2(a -1)
},  (7) 

can be calculated with the help of Maple through the following code: 
  
g1:= 1; b := - a2

2
; 

  
g2 := a + b; g3:= simplify(a + b

g2
); g4 := simplify(a + b

g3
) . One can conclude the calculations by 

verifying that 
  
g5:= simplify(a + b

g4
)  yields the value of   g1.  

 

 
Figure 5.  Graphs of the elements of cycle (7). 

 
 As shown in Figure 5, for   a < 0  the inequalities   g1(a) > g4 (a) > g3(a) > g2(a) hold true. The 
graphic demonstration can be confirmed analytically by employing the Wolfram Alpha to carry out 
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symbolic calculations (Figure 6). That is, for all   a < 0  the inequalities 

  
1> a2

2(a -1)
>

a(a -1)
a - 2

>
a(2- a)

2
 hold true. 

 Therefore, the permutation [1, 4, 3, 2] determines the direction of cycle (7) for   a < 0 . This time, 
the four-cycle changes the direction three times as it passes through the points a = 0, a = 1, and a = 2 all of 
which are zeros of the elements of cycle (7) and through which (except a = 0) their vertical asymptotes 
pass. 
 Observing the graph in Figure 5 makes it possible to conclude that the permutations [1, 2, 3, 4], 
[4, 1, 2, 3], and [3, 4, 1, 2] determine, respectively, the directions of cycle (7) in the intervals (0, 1), (1, 2), 
and  (2,¥) . The permutations  [1, 4, 3, 2], [1, 2, 3, 4], [4,1, 2, 3] and  [3, 4,1, 2] have two, four, three, and 
three rises, respectively. Furthermore, the 4-cycle changes its direction three times. One can note that in 
each of the permutations the neighboring elements are also consecutive points on the circles (Figure 7) 
and follow each other either in the CW or CCW direction, a property that may be overlooked without 
using circular diagrams as alternative representations of permutations. This fact one more time points at 
the importance of multiple representations of a mathematical concept using different notation systems 
[11]. Furthermore, as will be shown below, this kind of oscillations of generalized golden ratios observed 
in the context of the circular diagram notation, only relates to the case of cycles formed by the smallest 
root of Fibonacci-like polynomials. 

  
Figure 6.  Confirming graphic demonstration. 

 
 

 
Figure 7.  Circular diagram for cycle (7). 
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7. Permutations of the elements of a five-cycle 

 
 So far, our explorations concerned Fibonacci-like polynomials with a single root. It follows from 
definition (1) that the first polynomial with two roots is 

  

P3(x) = xmod(3,2) P2(x) + P1(x)

= x[xmod(2,2)P1(x) + P0 (x)]+ P1(x) = x(x +1+1) + x +1= x2 + 3x +1.
 

The smallest root of the equation   x2 + 3x +1= 0  is equal to  -(3+ 5) / 2Î(-4,0) . Using Maple, one 
can develop the following cycle generated by this root: 

  

{g1(a),g2(a),g3(a),g4(a),g5(a)}

= {1, a(3+ 5 - 2a)
3+ 5

, a(1+ 5 - 2a)
3+ 5 - 2a

,-2a(-1- 5 + a + 5a)
(3+ 5)(1+ 5 - 2a)

, (-1+ 5)a2

(-1- 5 + a + 5a)
}

 (8) 

and check to see that 
  
g(6) = a + 2(-1- 5 + a + 5a)

(-3- 5)(-1+ 5)
= 1.  

 
 Using the GC, one can construct the graphs of   gi(a),1£ i £ 5 , in a single drawing and then, 
prompted by the graphical representation, to verify symbolically the following inequalities: 

  g1(a) > g5(a) > g4(a) > g3(a) > g2(a)  for   a < 0 , 

  g1(a) > g2 (a) > g3(a) > g4(a) > g5(a)  for   0 < a <1 ,   g5(a) > g1(a) > g2(a) > g3(a) > g4(a)  for 

  1< a < (1+ 5) / 2 ,   g4(a) > g5(a) > g1(a) > g2(a) > g3(a)  for   (1+ 5) / 2 < a < (3+ 5) / 2 , and 

  g3(a) > g4(a) > g5(a) > g1(a) > g2(a)  for   a > (3+ 5) / 2 . As the expressions for   gi(a),1£ i £ 5 , 
become more and more complicated in comparison with cycle (7), one can use Maple in verifying the first 
chain of the above inequalities through the code   solve({g1> g5, g5> g4, g4 > g3, g3> g2}, a) , where 
the elements of the four inequalities are notations used in Maple to define and calculate those expressions. 
Similar code can be used to verify the other four chains of simultaneous inequalities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Circular diagram for cycle (8). 
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 Therefore the permutations 
 

[1, 5, 4, 3, 2], [1, 2, 3, 4, 5], [5, 1, 2, 3, 4], [4, 5, 1, 2, 3], and [3, 4, 5, 1, 2] 
 

 characterize directions of cycle (8) in the intervals 

 (-¥,0), (0,1), (1,(1+ 5) / 2), ((1+ 5) / 2,(3+ 5) / 2) , and  ((3+ 5) / 2,¥) , respectively.   These 
five permutations have two, five, four, four, and four rises, respectively. Furthermore, the 5-cycle changes 
its direction four times. The circular diagram representing the permutations is shown in Figure 8. Once 
again, the neighboring elements of the permutations follow each other on the circles as well, either in the 
CW or CCW direction.  

 
8. Generalizing from observations 

 
 As one analyzes the above three sets of permutations on  Z3,Z4 , and  Z5  the following pattern 
emerges. In all the three cases, regardless of the period, there are always one permutation with two rises 
and one permutation with the number of rises equal to the period of the corresponding cycle. Furthermore, 
given the period, other permutations have the same number of rises: for period three—two rises, for period 
four—three rises, and for period five—four rises; in other words, the number of rises in the remaining 
permutations is one smaller then the corresponding period. Analyzing the circular diagrams of Figure 4, 
Figure 7 and Figure 8, the observed pattern can be formulated as follows. In all the three cases, there are 
two circles where starting from point 1 and passing through all consecutive points the moves both in CW 
and CCW directions can be observed. On the rest of the circles the like moves in the CW direction starting 
from all the points but 2 occurs. 
 In general, there is only one permutation with two rises that starts with one; namely, 

  [1, p, p -1, p - 2,...,2] — the CCW movement on a circle with p points. There is only one permutation 
with p rises; namely,   [1,2,3,..., p -1, p] — the CW movement on this circle. The remaining p – 2 
permutations can be subsequently generated from the one with p rises, by putting the last element on the 
first place; namely 

  [ p,1,2,3,..., p -1]® [ p -1, p,1,2,..., p- 2]® [ p - 2, p -1, p,1,..., p - 3]® [3,4,..., p,1,2] — all these 
correspond to movements in the  CW direction on the circles avoiding the start from the point 2. A formal 
proof of the above technology-motivated generalization can be found elsewhere [2]. 

 
9. Can a pattern be found for oscillations formed by other roots?  

 
 The results of this section are based on computational experiments informed by guesstimate. First, 
it follows from definition (1) that among any three consecutive Fibonacci-like polynomials, there are 
exactly two polynomials of the same degree. In addition, computing shows that three consecutive 
polynomials don’t have roots in common. However, because a cycle of length p can be construed as a 
cycle the length of which is a multiple of p, the corresponding Fibonacci-like polynomials do have roots in 
common. Using Maple, one can discover that when p is an odd number the largest root of the 
corresponding Fibonacci-like polynomial that generates a p-cycle coincides with the root which generates 
a   (2 p)–cycle.  The further period doubling investigations lead to polynomials the largest root of which is 

different from that of their immediate predecessor. For example, the largest root of   P3(x)  (forming a 5-

cycle) coincides with that of   P8(x)  (thus forming a 10-cycle from two identical 5-cycles) and is different 

from that of   P18(x) (forming a 20-cycle). Therefore, for the sake of simplicity, only cycles of odd length 
formed by the largest root of the corresponding Fibonacci-like polynomial will be considered below.  
 The first Fibonacci-like polynomial having more than one root and associated with odd length is  

  P3(x) = x2 + 3x +1. Once again, the use of Maple makes it possible to develop the following cycle    



IMVI OMEN, 3(2013), 17-30                                                                                                          S. Abramovich  and  G. A. Leonov 
 

 27

generated by 
  
x̂5, l = (-3+ 5) / 2 , the largest root of   P3(x) , 

                                     

{g1(a),g2(a),g3(a), g4(a),g5(a)}

= {1, a(-3+ 5 + 2a)
-3+ 5

, a(-1+ 5 + 2a)
-3+ 5 + 2a

,

2a(1- 5 - a + 5a)
(-3+ 5)(-1+ 5 + 2a)

, (1+ 5)a2

(1- 5 - a+ 5a)
}.

   (9) 

Next, just like in the case of other cycles, the graphs of the elements   gi(a) ,   1£ i £ 5, can be constructed 
by using the GC. These graphs can assist one in developing permutations through solving five chains of 
four inequalities using Maple that indicate the type of oscillations of the corresponding generalized golden 
ratios. As a result, the permutations  
                      [4, 1, 3, 5, 2], [1, 3, 5, 2, 4], [1, 4, 2, 5, 3], [3, 1, 4, 2, 5], [5, 3, 1, 4, 2]         (10) 
can be shown to characterize the directions of cycle (9) within the intervals 

 (-¥,-( 5 -1) / 2), (-( 5 -1) / 2,0), (0,(3- 5) / 2),((3- 5) / 2,1), (1,¥) . 
 In combinatorial terms, among permutations (10), there are one permutation with two rises, one 
permutation with four rises, and three permutations with three rises. The pattern observed earlier for the 
smallest root of a Fibonacci-like polynomial where, for example, a permutation with five rises was found, 
is not confirmed now. In turn, one can construct the circular diagram (Figure 9) which shows a different 
type of behavior: the neighboring elements of the permutations are not consecutive ones on the circles. 
Rather, in all the five cases the neighboring elements of the permutations are separated by exactly one 
element on a circle. Also, there are two permutations that start with 1 moving in the CW and CCW 
directions and no permutation starting with 2. Finally, the first permutation starts with 4. Can a similar 
behavior be observed in the case of a cycle of period seven associated with the largest root of the 
polynomial   P5(x) ? 

 It follows from definition (1) that   P5(x) = x3 +5x2 + 6x +1, a polynomial with three real roots. 
Considering the cycle  

                              {g1(a),g2(a),g3(a), g4(a),g5(a),g6(a), g7(a)}     (11) 

generated by its largest root, 
  
x̂7, l @ -0.198062264195 , one can conclude (using Maple) that the 

permutations 
                         [4, 6, 1, 3, 5, 7, 2], [6, 1, 3, 5, 7, 2, 4], [1, 3, 5, 7, 2, 4, 6], [1, 6, 4, 2, 7, 5, 3],  
                         [3, 1, 6, 4, 2, 7, 5], [5, 3, 1, 6, 4, 2, 7], [7, 5, 3, 1, 6, 4, 2]                    (12) 
 
define the directions of cycle (11) on the number line. 

 
 
 

 
 

    
 

   
 
 
 
 
 
 

Figure 9.  Circular diagram for cycle (9). 
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Figure 10.  Circular diagram for cycle (11). 
  
 Among permutations (12), there are one permutation with six rises, one permutation with two 
rises, two permutations with five rises, and three permutations with three rises. Whereas in terms of the 
rises, no pattern that matches the case of cycle (9) emerges, by constructing the circle diagram shown in 
Figure 10, one can see that in all the seven cases the neighboring elements of the permutations are 
separated by exactly one element on a circle. Furthermore, there are two permutations that start with 1 
moving in the CW and CCW directions and no permutation starting with 2. Finally, the first permutation 
starts with 4. But this is exactly the type of oscillations shown in Figure 9 for the (five-element) string of 
generalized golden ratios also formed by the largest root of the polynomial   P3(x) . 

 Continuing in this vein, for a 9-cycle generated by the largest root of the polynomial   P7 (x) , one 
can find that the permutations  
 
                       [4, 6, 8, 1, 3, 5, 7, 9, 2], [6, 8, 1, 3, 5, 7, 9, 2, 4], [8, 1, 3, 5, 7, 9, 2, 4, 6], 
                       [1, 3, 5, 7, 9, 2, 4, 6, 8], [1, 8, 6, 4, 2, 9, 7, 5, 3], [3, 1, 8, 6, 4, 2, 9, 7, 5], 
                       [5, 3, 1, 8, 6, 4, 2, 9, 7], [7, 5, 3, 1, 8, 6, 4, 2, 9], [9, 7, 5, 3, 1, 8, 6, 4, 2],  (13) 
 
define the cycle’s directions on the number line. Once again, by representing permutations (13) through a 
circular diagram (not shown here), one can observe that the first permutation starts with 4; two 
permutations start with 1 and they move in the CV and CCW directions; no permutation starts with 2; and 
the neighboring elements of the permutations are separated by exactly one element. One can guess that 
similar behavior could be observed for odd  p > 9 , as on a circle, augmenting a set of points by two points 
enable for that kind of oscillations to continue.  
  

10. Concluding remarks 
 

 This note demonstrated how, using commonly available computer applications, allows for the 
discovery of patterns that structure oscillations of generalized golden ratios formed by the roots of the 
Fibonacci-like polynomials. It was shown how universality of oscillations associated with the smallest 
root, regardless of the length of the string of the ratios, can be established and formulated in combinatorial 
terms. In addition, the use of circular diagrams informed by computational experiments in the case of the 
strings of odd number lengths made it possible to recognize patterns associated with the largest root. The 
note may be used as a source of activities for secondary mathematics teacher candidates enrolled in a 
capstone course emphasizing the value of learning mathematics through a computational experiment. 
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 Regarding the relationship between the use of technology and the development of skills in algebra 
by a student of mathematics, the authors are in the opinion that simple symbolic calculations, like in the 
case of a three-cycle, must be encouraged to make sure that the basic algebraic skills have been developed 
and can be used in analyzing results produced by a computer algebra system. Yet, as the complexity of 
symbolic calculations increases, the use of technology should also be encouraged and promoted as 
appropriate. Through such a use one develops a new set of skills and, more importantly, extends the 
boundaries of symbolic calculations that otherwise would either be impossible or require time that can be 
used for other, more meaningful and useful mathematical activities.  
 Thus, as far as mathematics learning and knowledge development are concerned, the appropriate 
use of technology can be interpreted in the following two complimentary ways: what can be done with 
technology today can be done without technology tomorrow (paraphrasing the viewpoint, “What the child 
is able to do in collaboration today, he will be able to do independently tomorrow” [12, p. 220]) and what 
yesterday could be done without technology, today can be extended to include the use of technology 
(paraphrasing the viewpoint, “numerical experimentation . . . can help us decide what to believe in 
mathematics” [5, p. 104]). 
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